Table D3

City of Burbank - Burbank WRP

Receiving Water Data Station upstream of Discharge #002 - Burbank Western Channel (CA0055531, CI-4424)

		,				, , , ,	.000000		:/				
CTR		, T											
1:	[İ					-	F			
		}					٠.			Conductivity (not Salinity in ppm)			
	Ì								'	.⊑			
	Data							(<u>.</u>			
	Source						İ			<u>-</u>			
	B=BC lab,		7.			i ·				, iii			
	C=Caltest	Residual chlorine			. * *			ļ		l p			
	lab,) õ		•	ο (Je.) ÷	1	*	
	P=POTW,	ㅎ			Temperature	50				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
· ·	A =	na	ا يو		95	岩		1	<u>₹</u>	털	ĺ	i ·	
	Annual	l is	Sulfate	. ဟ	문	. 🚾	z	လ	Turbidity	<u> </u>	>		>
1	Rept	Pe.	Su	TDS	e e	Total Nitrogen	X	TSS	⊉				flow
			mg/L		F	mg/L		mg/L	NTU	(umho/cm)		cfs	
1/1/1999		<0.1			51								
2/4/1999		<0.1	144	624	58		0.42		1.34	926			
3/1/1999		<0.1			60								_
4/1/1999		<0.1			55				1				
5/5/1999		<0.1	169	628	60		1.6		2.14	993			
6/1/1999		<0.1		• .	62								
7/1/1999		<0.1	-		65							4	
8/2/1999		<0.1	123	560	64		1.8		4.8	805	Ŀ		_:
9/1/1999		<0.1			67				7.				
10/1/1999		<0.1			62		L						
11/10/1999	EC	<0.1	125	780	58		. 15		2.6	· 1242			_
12/1/1999		<0.1			51								
1/1/2000					53		ĺ				0.74		,
2/15/2000	A	44.4	136	420	48		0.6		9.4	677	0.82		
3/1/2000					59						0.97		
4/1/2000		_			63						1.25		
5/15/00	A		179	892	61		2.5		3.2	1485	2.72		
6/1/00		·			62						0.85		
7/1/00					66						0.98		
8/8/00	A	_: ·	142	746	68		<8		24	1214	1.41		
· 9/1/00					61						0.94		
10/1/00					59	1.00					0.96		-
11/2/00	A		117	499	56		8.0		3	803	1.08		
12/1/00					52						0.56		
1/30/01													
5/2/01													_
7/31/01							1.1	7		1234	1		
7/31/01								7		1234	1		
8/8/01											_ :		_
8/22/01			1 2 2					9		. 962	1.3		_
8/22/01								9		962	1.3		
9/4/01								41		657	. 4		
9/4/01								41		657	. 4		
10/2/01								6		949	0.65		
10/2/01													
11/2/01								43		1026	0.78		
11/2/01													-
11/6/01	EC							-					
12/5/01	BC							3		929	0.44		_
12/5/01					1								
1/9/02													
1/9/02								5		1035	1		
2/5/02					- 1		•	· .					
2/6/02								1.9		1492	6.5	· · ·	_
2/6/02							-	1.0	· -		5.5		
210102	<u> </u>												_

Table D3

City of Burbank - Burbank WRP

Receiving Water Data Station upstream of Discharge #002 - Burbank Western Channel (CA0055531, CI-4424)

CTF		1	1.	T		T .	т -	T .	j	1	T	, .	1	
017	· · · · · · · · · · · · · · · · · · ·	-	 	 		 	┼	 	 	 		·		
]							· .				Conductivity (not Salinity in ppm)	·		
				}					ĺ .		م و	ĺ	ļ ·	
		Data									. <u></u>	1		
		Source				1			l		<u> </u>		1	
		B=BC lab,			٠.						Sal			•
1	•	C=Caltest	ne	j				,]	ŀ	t			•
		lab,	lori			. 00	en				5			- 1
		P=POTW,	Residual chlorine			Temperature	g	'l .			, ijs			
1		A =	ual	o		era	ij			I≟	į		٠,	
		Annual	sid	lfa t	S	윤	a	z	ဟ	Turbidity	힏	- >		>
1		Rept	Re	Sulfate	TDS	. ₽	Total Nitrogen	I X	TSS	ļ	ී යි	flow		flow
				mg/L		F	mg/L		mg/L	NTU		MGD	cfs	-
	3/6/02	C			* * *				4		873	6.7	_	:
	3/6/02	BC .												
	4/16/02	С												
	4/16/02	BC							1.		1027	2.6		
	5/7/02				·									
L	5/7/02							ļļ		·	1087	. 1		
<u></u>	6/6/02	C ·												·
<u></u>	6/6/02						<u> </u>		77	_ ·	1119	0.58		
-	7/2/02	BC.					·		446		007		-	·
<u> </u>	7/2/02						<u>:</u>		110		825	1		
-	8/6/02 8/7/02	EC						 	22		1075	1		
<u> </u>	8/7/02							_	22	·	10/5		<u>·</u> _	<u> </u>
<u> </u>	9/10/02		·					 	8		1167			
-	9/10/02							<u> </u>		- ; ;	110/		-	
<u></u>	10/8/02	BC		·					9		840	1.2		
	10/8/02										040	-1.2		-
-	11/5/02				-									
-	11/6/02					:-	-		20		870	0.97		
-	11/6/02				·									
	12/3/02	BC							2		1029	0.81		
	12/3/02	C	$\neg \dashv$		f									· .
	1/1/03		<0.1	.		62						1.6		-
	2/4/03		0.2	. 128	606	56	4.3			1.86	883	0.8	-	
Procession St.	3/1/03		0.2			61						1		
	4/1/03		<0.1			64						0.8		
	5/6/08	A	0.2	134	724	69	5.1			2.2	1080	1		
	6/1/03		0.2			67						1.3		
	7/1/03		0.1			77						8.0		
	8/5/03	Α	0.1	115	1102	73	_7.5			5	1512	0.7		
<u></u>	9/1/03		0.1			73						1.2		
:Thinis:m.	10/1/03		0.1			69					,	0.9		
	11/6/03	<u> </u>	<0.1	98	594	62	2.2			1	653	1.1		
	1:1/6/03	· · · · ·		<u>.</u>				•						
	12/1/03		<0.1	`		54	<u>. </u>					0.6		
CONTRACTOR OF THE PARTY OF THE	1/1/04	A	<0.1			54					704	1.6		
	2/10/04		<0.1	125	630	57	3.6			4	791	0.5		
<u> </u>	3/1/04		<0.1			64						1.3		
	4/1/04		<0.1		- 646	64	~~~				115-	1		
	5/4/04		<0.1	101	810	66	6.2			4	1157	1	· · _	
_	5/4/04		-0.4									4 1		
<u> </u>	6/1/04		<0.1			68					·	1.4		-
and the same	7/1/04	A .	<0.1	400	74.0	74					1001	1		
	8/4/04		<0.1	168	718	_ 71	3		Min.	12	1001	1.2		
<u> </u>	9/1/04	Α	<0.1	لححب	1	69						1.1		

Table D3

City of Burbank - Burbank WRP

Receiving Water Data Station upstream of Discharge #002 - Burbank Western Channel (CA0055531, CI-4424)

CTR	T. T		<u> </u>	·		· ·	T T					· · · · · · · · · · · · · · · · · · ·
Join .	 			<u> </u>	 		 				 	
			*. •							Conductivity (not Salinity in ppm)		
	Data Source B=BC lab,		.*							Salinity		
	C=Caltest	orine			_	<u> </u>				(not §		
	iab, P=POTW,	al chi			rature	litroge			.≥-	ctivity		
	A = Annual Rept	Residual chlorine	Sulfate	TDS	Temperature	Total Nitrogen	TKN	TSS	Turbidity		flow	flow
			mg/L		F	mg/L		mg/L	UTN	(umho/cm)		cfs
10/1/04		0.1			66			Hillian.			1.1	
11/2/04	Α <	0.1	184	792	59	4.1			2	1211	0.9	
12/1/04	Α <	0.1			58						0.7	
									• •			
1/1/05		0.1			59						4.3	
2/15/05	Α <	0.1	85.4	516	61	2.9			2.2		12.6	
3/1/05		0.1	. •		65						9.7	
4/1/05	<	0.1			65						3	
5/12/05		0.1	94.2	516	67	3.4			7.7	100	. 1.9	
6/1/05		0.1			74	6.4					2.2	
7/1/05		0.1	,		72						1	
8/9/05		0.1	120	634	71	2.9		Maria.	5.2		2.4	
9/1/05		0.1			68			Marini.			0.7	
10/1/05		0.1			70				1.3		1.5	
11/1/05	Α <	0.1	154	564	62	1.5			133		0.6	
12/1/05	(<	0.1			55				16.6		1.2	
											.,	
2/8/06										٠.	•	·
5/2/06	eMR											
<u>'</u>				<u> </u>								
				•								
								Michille,				
MEC		2 -	45.					445				2.05
MAXIMUM		0.2	184	1102	77	7.5	15	110		1512		0.00
MINIMUM		0.1	85.4	420	48	1.5	0.42	1		653	0.44	0.00
DETECTS		10	20	20	60	13	7	20		37	69.00	0.00
COUNT	<u></u>	48	20	20	60	13	. 8	20		. 37	69.00	0.00
%NONDETECT		9.2	0	0	0	0	12.5	0		0		#DIV/0!
AVE	0).14	132.08	667.75	62.78	4.08	3.25	21.30		1013.03	1.71	#DIV/0!

		:			·													· · · · · · · · · · · · · · · · · · ·			
-			-			<u> </u>	CTR CF	RITERIA											HUMAN HEA	ALTH CALCU	JLATIONS
						F			1111-	Davida Dia		HEAS	ONABLE	POIENI	IAL ANAL	YSIS (HPA	4)				
1.						Fresi	water	Human	Health	Basin Plan		r	Tier 1 -	1	B>C &	Tier 2 -	Tier 3 -	Tler 3 -		Organisns O	niy .
-1				· · ·		C acute =	C chronic =	Not applicable		Title 22		MEC >=	Need		present	Need	other	need	ECA = Chh		*
lc:	rR#	DATE	Units	cv	MEC		CCC tot	C hh W&O	C hh O		Lowest C		limit?	В	in Effi.	limit?	info. ?	limit?			MDEL hh
													Go to		1	Go to		· · · · · · · · · · · · · · · · · · ·			
	1	Antimony	μg/L	0.8	1.5	NONE	NONE	14	. 4300	6	6	NO.	Tier 2	2	No	tier 3	NO -	NO		2.01	
								•													
ľ									· .	1			1 .	1			ļ		· .	•	
			_		_				l				Go to			1	1			0.04	
-	2	Arsenic	μg/L	0.6	8	340	150	NONE	NONE	10	10	NO	Tier 2 Go to	50.5	Yes	Yes Go to	 	 		2.01	<u> </u>
1	3	Beryllium	μg/L	0.6	<0.8	NONE	NONE	Narrative	Narrative	. 4	. 4	NO	Tier 2	<1	No	tier 3	NO	NO		•	
			PS-C	0.0		110112	T.C.T.E	Tundavo.	T Carrotte				1		1	111111	1	1			· · · · · · · · · · · · · · · · · · ·
			1	,							·			<u> </u>			1.				
						1			İ			1.	,			1.	Ι.	1			
				-													'	1 .			
- 1										. /							303(d)			•	
_ i ·												*					Listed 8	k			[
-11													`		١.,	1	TMDL	İ			1
-		Co-d-liver						<u> </u>	l.,	_ ا			Go to				adopt-	VE0	·		
-	4	Cadmium**	μg/L	0.2	0.3	11.5	4.7	Narrative	Narrative	. 5	4.7	NO	Tier 2 Go to	2.2	No	Go to	ed	YES	NA		NA
58		Chromium III*	μg/L	na	na	3360	401	Narrative	Narrative		540	NO	Tier 2	6.9	No		NO	NO	Ì		
			r-g	1.1.2		1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				11010	1	111	1					
			ļ	i ' '				1						-				1	1		1
51	,	Chromium VI	μg/L	0.4	. 9	16.3	114	Narrative	Narrative	50	11	NO	NO	20	YES	YES			N/A	1.67	N/A.
				1	<u>-</u>							1111	1112		1	·					
-			<i>'</i>				'		ĺ									1 '		• •	
				j .			,			1				1		ŀ	1	1	1.	1	
		·]						١.	l			1] .	-		
- 1		·		'									.				~	1			
														1	1		Reg. Bo				.
⊢		Copper*	μg/L.	0.5	64	30	19	1300	NONE .		19	YES	YES.	150	YES	YES	TMDL	YES	N/A	1.84	N/A
			·						"	· .].	1		1
١.			· ·												1					·	
-		•		1					1		٠.	1	1		i .					·	· ·
		•					ļ						.	ľ					1 .		1
		1.	ŀ				1	l .		l	1			ļ.		1	· ·	1 .	1 .		·
							1			1.				.			Reg.	1.			[
			1		!		1		•				1		1	1	Bd.				1
-	- 7	Lead** .	μg/L	0.4	1.9	234	9.1	Narrative	Narrative		9.1	NO	NO	7.1	NO	NO	TMDL	YES		·	-
					'								1					1			1
		·					1 .	• .				1				1. •	1.				1
	,	Mercury ·	μg/L	0.6	. n.ne	Reserved	Reserved	0.05	0.051	. ,	0.051	NO	NO	0.33	YES	YES	1		0.051	2.01	0.1025
L.,		aliaici crit à	IHU'L	1 0.0	0.00	il ilegal ken	II 1096I AER	1 0.00	0.031	<u> </u>	0.00		14.0	0.00.	,				,		

_				,		AQUATIC L	IFE CALCUL	ATIONS		AQUA	TIC LIFE	CALCULATIO	ONS				Pre	evious P	ermit Li	mits
						٠.			••.		-	-		1 ·						
1		·		· ·	1508		reshwater			AMEL	Frest	water MDEL		PROPOS	ED LIMITS		Order 9	8-052	Order 9	36-050
		DATE		Units	ECA scute multiplier (p.7)	LTA acute	ECA chronic	1	Lowest	multiplier	AMEL ag.life	multiplier (n=4)	MDEL aglife	Lowest	Lowest	Recommendation	Mo Ave	Daily Max	Mo Ave	Daily Max
۳	1 177	DATE	-'	Offics	(p.1)	LIA acute	manapher	Cinonic		(11-4)	ayine	(11=4)	aqiiie	Anthe	MIDEL	Interim Monitoring - No CTR-based		max	Ave	max_
	1	Antimony_		μg/L		:			·	<u> </u>	<u> </u>	· .	<u> </u>		<u>-</u> .	Limit	7			
	·				1 -										· ·	RP (Tier 2) to exceed the new				
			•													Federal MCL. Need limit to protect the MUN BU of the groundwater	Ψ.	50		
1	2	Arsenic		μg/L	0.321	109.14	0.527	79.05	79.05	1.55	122.528	3.11	245.846	10) 	basin.	ļ	stayed		50
		1		1												Interim Monitoring - No CTR-based	1	,	†	1
\vdash	3	Beryllium	·	μg/L	ļ	<u> </u>		-					 `	<u></u>		Limit	<u> </u>	ļ	<u>. </u>	<u> </u>
	, 1	1		1	1	1	l	l			1						ľ	1		
1													1.			Need limit (Tier 3). RP to exceed the CTR Freshwater Aquatic life				• • •
1									İ .				Ι΄.		·	criteria. The LA River Metals		'		'
1		1		1		1			l .	· .	l		l	ł		TMDL contains a WLA for		l .		1
	1															Burbank WRP. SIP procedures			,	,
										,	i .					used to calc. mo ave and daily max. according to TMDL	,	3.7		' '
L	4	Cadmlum**		µg/L	0.643	7.3945	0.797	3.7459	3.7459	1.17	4.3827	1.55	5.80615	4.4	5.8	Implementation section	stayed	stayed		. 10
												,				Interim Monitoring - No CTR-based	1	T		$\overline{}$
<u>5a</u>		Chromium III*	· · · · · · · · · · · · · · · · · · ·	μg/L .	<u> </u>	 			 	· · · · ·	 -	**	<u> </u>	-		Limit		 		<u> </u>
1		.		1	.			}	ł							Need Limit (Tier 2). RP to exceed			l	1
5E		Chromium VI		μg/L	0.44	7.1690428	0.643	7.3523909	7.169043	1.36	9.7499	2.27	16.2737	9.7	16	the CTR Freshwater Aquatic life criteria.		15 stayed	L	. 50
F						.,,,,,,,							1				Joan	3.4,00		. 50
		~		ł	ł ·			}						ł .		Need Limit (Tiers 1, 2 & 3). RP to			} .	
-				. .					, ,							exceed the CTR Freshwater				
1		` .	•													Aquatic life criteria. The calculated CTR AMEL is the	1	l ·		
1		,	•	1		ł.	}				İ	l	ł	.	ł	same as the TMDL WLA for	11	17		
L	6	Copper*		μg/L	0.373	11.19	0.581	11.039	11.039	1.45	16.0066	2.68	29,5845	16	30	copper, but not the MDEL.	stayed	stayed		1000
			· · · · · ·								1							-		.
1								l							1	Need limit (Tier 3). RP to exceed	ŀ			
						·			l · · ·	i .						the CTR Freshwater Aquatic life		· .		
								1					1			criteria. The LA River Metals TMDL contains a WLA for	l			
1	- 1								1		· ·		1	ł.,		Burbank WRP. SIP procedures		}	1	. '
	- 1	, ,	-].						ŀ	` .		,	used to calc. mo ave and daily		ŀ		-1
				l		400.00								-		max. according to TMDL	2.5	15		'
1	-4	Lead**		µg/L	0.44	102.96	0.643	5.8513	5.8513	1.36	7.95777	2.27	13.2825	8	13	Implementation section	stayed	stayed		50
		·												ľ		Need Limit (Tier 2). RP to			1	
	ا۔								!	٠.					·	exceed the CTR Human Health		2.1		
L	8	Mercury	<u>.</u>	μg/L	0.321	NA	0.527	NA	NA	1.55	NA ·	3.11	NA	0.051	0.1	Organims only criteria.	stayed	stayed	<u> </u>	2

,				T	·		CTRC	RITERIA	 	· · · · · · · · · · · · · · · · · · ·			<u> </u>			:			HIMANHE	ALTH CALCU	I ATIONS
'												REAS	ONABLE	POTENTI	AL ANALY	'SIS (RPA	١)		HOMPACTIE	ALTII OALOO	LATIONS
ľ	}					Frest	water	Human	Health	Basin Plan		1	(Tion 4	· ·	16:00	T#1 A		T-1		Organisns O	nly
CTR	#	DATE	Units	СУ	MEC	C acute = CMC tot	C chronic = CCC tot	Not applicable C hh W&O	C hh O	Title 22 GWR	Lowest C	MEC >= Lowest C	Tier 1 - Need limit?	В	B>C & present in Effi.	Tier 2 - Need limit?	Tier 3 - other info. ?	Tier 3 - need limit?	AMELhh = ECA = C hh O		MDEL hh
i																	-				
		*.	,		,									· ·				· · ·			
	1	•											Go to			Go to		1 .			
	9 1	Nickei*	μg/L	0.5	11	928	10	610	4600	100	100	NO	Tier 2	20	No	tier 3	ļ	<u> </u>			
						.*					٠.				·.		ł				
. 1	0	Selenium	μg/L	0.5	23	RESERVED		Narrative	Narrative	50	5	YES	YES	2.8		, .			NA .	2.7	NA
	Ī															1	Ī -				
	.				•	ľ			' '				·	<u> </u>				1.		†	
		. •						1								ļ					Ì
ł	1					Ì		1											.,		
l	1											1	l .						1		l -
ì	ì		\ · ·							ì			Go to	ì	1	Go to		1			:
1	11	Silver*	μg/L	0.5	1.1	16	none	NONE	NONE		16	NO	Tier 2	0.73	No	tier 3	NO	NO			1
	jal-	Thallium	μg/L	0.6	<0.1	NONE	NONE	1.7	6.3	,		NO	Go to Tier 2	0.09	No	Go to tier 3	NO	NO .			
<u> </u>	-	manum	μg/L	0.0	20.1	NONE	NONE	1.,	0.5				TICI Z	0.03	·	uer 3	NO	INC	· .	-	
	ľ	•] .												
	1		1	-		1	,								}					1	•
			١.			1					- F			'			.				
	1						1		: .							2.1				,-	. :
			ľ									1	Go to					RegBd	,		
1	3	Zinc*	ug/L	0.2	121	237	23	none	NONE		237	NO	Tier 2	420	YES	YES	YES	TMDL	YES	1.33	NA
	T								- 14 - 15			[·					1			1	
											. :	,						1	}		
<u> </u>	4	Cyanide .	μg/L Fibers/	0.6	< 5	22	5.	700	220,000	200	5.2	NO	NO	14	NO	NO	L	ļ			
1	5	Asbestos	L L		<0.2	NONE	NONE	7,000,000	NONE	7x10^6	7x10^6	NO	Go to Tier 2	<0.2	No	Go to	NO	NO			٠.
	1		 	:	U.									T .		1			•	,	
	1									1	1	} ·				Go to					
1	6	2,3,7,8-TCDD (Dioxin)	µg/L	0.6	<0.2	NONE	NONE	0.000000013	1.4E-08	3x10^-5	1.4E-08	NO	NO Go to	<0.0017	No	tier 3	NO	NO		· · · · · ·	ļ
1	7	Acrolein	μg/L	0.6	<20	NONE	NONE	320	780	· · · <u>·</u>	780	NO	Tier 2	<20	No	tier 3	NO_	NO			
	.]																				
											4.4					Go to					
. 1	8/	Acrylonitrile	μg/L	0.6	<5	NONE	NONE	0.059	0.66		0.66	NO .	NO	<5	No	tier 3	NO	NO	·		L

·				AQUATIC I	IFE CALCUL	ATIONS		AUIA	TIC LIFE	CALCULATI	ONS	т.		<u> </u>	Pro	evious P	ermit I	imite
ľ		l		AGUATICE	II L CALCOL	ATIONS		Ador		DALOGEATI		1			- 110	SVIUUS I	EITHE L	minto
i				F	reshwater				Frest	water		PROPO	SED LIMITS		Order 9	98-052	Order	96-050
			ECA acute		ECA			AMEL	l	MDEL		<u> </u>						1
OTD#	DATE	Units	multiplier (p.7)	LTA acute	chronic	LTA chronic	Lowest LTA	multiplier (n=4)	AMEL aq.life	multipiler (n=4)	MDEL aglife	Lowest	Lowest MDEL	Recommendation		Daily Max	Mo Ave	Daily Max
CIHA	DATE	Units	(p.1)	LIA acute	munthier	Chione	LIA	((1=4)	ay.me	(11=4)	- aquise	ANICL	MUEL	Deleted the limit because there	Ave	Max	Ave	IMAX
		· ·		1						1	ŀ	ļ . ·		was no RP. New monitoring data				- '
											ļ	1		(new information) indicated pollutant is not present in the				
-		1						ļ.				1.		effluent or receiving water. Require		100	Ì	ŀ
. !	9 Nickel*	μg/L	ļ	ļ						· ·		 		interim monitoring.	-	stayed		10
•								,				1 :		Need Limit (Tier 1). RP to exceed				
10	0 Selenium	μg/L	0.373	#VALUE!	0.581	2.905	2.905	1.45	4.21225	2.6	8 7.7854	4.	2 . 75	the CTR Freshwater Aquatic Life Criteria,		20 stayed		1
	OSEIEIIIIIII	IPG/L	0.070	#TALULI	0.001		2.000	1.40	7.2.12.0		1.705	<u>, , , , , , , , , , , , , , , , , , , </u>			Stayeu	Stayeu	_	+-'
			,	ļ [:] .			1					· .	, .	No new limit, because there was		1		
		ŀ												no RP to exceed the CTR criteria. Deleted the Gold Book-based limit			1	
		l				ł								from Order No. 96-050 because				•
		ŀ					·	·			1	1.		the WQO became invalid with USEPA's adoption of the National	1			
	· ·						ŀ		1					Recommended Water Quality	.		1	
		İ		l .			'	' '	1.0			1	1.	Criteria: 2002 (EPA-822-R-02-047,				
	1 Silver*			`							1	1.		November 2002). Require interim monitoring.	l	3.4		١.
	Silver	μg/L									1		- 	monitoring.	 -	stayed	-	
1:	2 Thallium	µg/L	<u> </u>								1			Interim Monitoring - No Limit	<u> </u>	ļ	<u> </u>	
					, .										'			
		1.			٠.		Ì				1			Need limit (Tiers 2 & 3). RP to				-
				1.	· .	:			1	[ĺ	· ·		exceed the CTR Freshwater	ĺ	Ĭ	1	
	·		: -											Aquatic life criteria. The LA River Metals TMDL contains a	·	ľ		
												l: '		212 µg/L WLA for Burbank WRP.	1			
		1		1.							Ι.			Calculated limit will be used	1			
				450.004	0.707	400.000	450 004		170 007	4.5	5 236.206	178.	, ,,,,,	because WLA was not statistically adjusted.	100	110		
1;	3 Zinc*	μg/L	0.643	152.391	0.797	188.889	152.391	1.17	178.297	1.5	230.200	170.	230.4	statistically adjusted.	stayed	stayed	 -	501
	•			١٠.														ļ
		1						,							5.2	22	İ	
1	4 Cyanide	μg/L Fibers/	-	<u> </u>	· · · ·	<u> </u>			<u> </u>	· · · · · ·		 -	-	Interim Monitoring - No Limit	stayed	stayed	 - _	20
1	5 Asbestos	L								* .				Interim Monitoring - No Limit	1		-	.
		1			,						-	1		7				
•]				1.	1				1.	J			Į			
1(6 2,3,7,8-TCDD (Dioxin)	μg/L				· · · · · ·								Interim Monitoring - No Limit			<u> </u>	
17	7 Acrolein	μg/L									.	_	_	Interim Monitoring - No Limit]		1:	
··.		1.3			:						1	1						1
			1									-				.		
4.	Angdonitrilo	uati							1				L	Interim Monitoring - No Limit			1	
13	8 Acrylonitrile	μg/L	نــن			1	L	l	L	<u>_</u>				furerun Motistoritid - Mo Fittilf		ــــــــــــــــــــــــــــــــــــــ		

	· · · · · · · · · · · · · · · · · · ·	г —	·			CTR CE	RITERIA			 	·-	·						HUMAN HE	AI TH CALC	III ATIONIC
1			ļ				iii Lilia		1 -	i	REAS	ONABLE	POTENT	IAL ANALY	YSIS (RPA	4)		HUMAN HE	ALI II CALC	JEATIONS.
1			}	}	Fresl	hwater	Human	Health	Basin Plan	\					<u> </u>				Organisns C	nly
·					C acute =	C chronic =	Not applicable		Title 22		MEC >=	Tier 1 - Need	Į.	B>C & present	Tier 2 - Need	Tier 3 -	Tier 3 -	AMELhh = ECA = C hh	MDEL/	
CTR#	DATE	Units	CV	MEC	CMC tot	CCC tot		C hh O	GWR	Lowest C	Lowest C	ilmit?	В	in Effi.	limit?	info. ?	need limit?	O C C IN	multiplier	MDEL hh
1	Benzene	μg/L		<0.5	NONE	NONE	1.2	71		{	NO	Go to Tier 2			Go to	lu _o	1			
 	Delizerie	μg/L	0.6	0.5	NONE	NONE	1.2		 		NO	Tier 2	<0.5	No	tier 3	NO	NO	 	<u> </u>	
	L	· .	٠	<u>.</u>								Go to		1	Go to			-		
20	Bromoform	μg/L	0.6	67	NONE	NONE	4.3	360	 	360	NO	Tier 2 Go to	₹2.1	No	Go to	NO	NO		ļ <u>.</u>	L .
21	Carbon Tetrahloride	μg/L	0.6	0.14	NONE	NONE	0.25	4.4	0.5	0.5	NO	Tier 2	<0.5	No	tier 3	NO	NO			
	011				NONE	NONE		04.000		04 000		Go to		Ī	Go to					<u> </u>
- 2	Chlorobenzene	μg/L	0.6	<0.5	NONE .	NONE	680	21,000	 	21,000	INO	Tier 2	<0.5	No	tier 3	NO	NO	ļ	ļ	—
			ŀ	· ·																
23	Dibromochloromethane	μg/L	0.2	110	NONE	NONE	0.401	34		34	YES	YES	4.6	1.				34	1.33	3 .45
Ì						1 :				1	No Criteria	Go to	T		Go to		1			
_ 24	Chloroethane	μg/L	0.6	<0.5	NONE	NONE	NONE	NONE	ļ	NONE	Available	Tier 2	0.8	NA .	tier 3	NO	ИО			
2,	2-chloroethyl vinyl ether		ء ا	<10	NONE	NONE	NONE	NONE		NONE	No Criteria Available	Go to Tier 2	-40	NIA	Go to	NO.				1.
-	2-chioroethyl vittyl ether	μg/L	0.0	10	NONE	INONE	NONE	NONE	·	NONE	Available	. IIEI Z	<10	NA	tier 3	NO	NO		-	-
· .											No Criteria	Go to	İ		Go to					
26	Chloroform	μg/L	0.3	30	NONE	NONE	Reserved	Reserved		Reserved	Available	Tier 2	3.4	NA	tier 3	NO .	NO	 	 	
1		l											1							
27	Dichlorobromomethane	μg/L	0.2	67	NONE	NONE	0.56	46		46	YES	YES	, 2.8		ļ	ļ	<u> </u>	46	1.33	3 61
1 20	1,1-Dichloroethane	μg/L		<0.5	NONE	NONE	NONE	NONE	_	_	NO .	Go to Tier 2	<0.5	No	Go to	NO	NO		1	
1 29	1,1-Dichloroethane	μg/L	0.0	1 < 0.5	NOINE		NONE	INOINE	3		INO .	Tiel Z	<0.5	. 110	tier 3	NO	NO	 	 	
			ا أ		NONE		0.00		0.5		NO ·	Go to Tier 2			Go to				٠.	
25	1,2-dichloroethane	μg/L	0.6	<0.5	NONE	NONE	0.38	99	0.5	0.5	INO	Go to	<0.5	No	tier 3	NO .	NO	 	 	
30	1,1-Dichloroethylene	μg/L.	0.6	<0.5	NONE	NONE	0.057	3.2	6	3.2	NO	Tier 2	<0.5	No	Go to	NO -	NO			
			1			,						Go to		1	Go to	1			· ·	
31	1,2-dichlooropropane	μg/L	0.6	<0.5	NONE	NONE	0.52	39	5	5	NO	Tier 2 Go to	<0.5	No	Go to	NO	NO	<u> </u>		—
32	1,3-dichtoropropylene	μg/L	0.6	<0.5	NONE	NONE	10	1,700	0.5	0.5	NO	Tier 2	<0.5	No		NO	NO			
												Go to			Go to	1			 	
33	Ethylbenzene	μg/L	0.6	<0.5	NONE	NONE	3100	29,000	300	0.7	NO	Tier 2	<0.5	No		NO	NO		-	ļ
34	Methyl bromide	μg/L	1.4	7.8	NONE	NONE	48	4,000		. 4,000	NO	Go to	<1	No	Go to	NO	NO			
		14.8°.		7.0				7,500		7,000	No Criteria	Go to	 ``	. 140	Go to	1.,0	 	 	 	—
35	Methyl chloride	µg/L	0.6	0.52	NONE .	NONE	Narrative	Narrative	·	Narrative	Available	Tier 2		<0.5		NO	NO		-	<u> </u>
36	Methylene chloride	μg/L	0.6	1.8	NONE	NONE	4.7	1,600		1,600	NO	Go to Tier 2	3	No	Go to tier 3	NO	NO	1.		
		-y-	1	1.0				.,,,,,,,,		.,,500		1	1		1	† "				1
			[1				- · <u>- ·</u>								[-			[
37	1,1,2,2-tetrachiroethane	μg/L	0.6	<0.5	NONE	NONE	0.17	. 11	1	1	NO	NO	<0.5	· · ·	 	 	 	 - 	·	_
38	Tetrachloroethylene	μg/L	0.6	1	NONE	NONE	0.8	8.85	. 5	5	NO .	NO	<0.5		·					

CTR# DATE	TIC LIFE CALCULATIONS	ULATIONS		Previous Permit Limits
CTR# DATE Units multiplier (p.7) LTA s 19 Benzene	Freshwater	PROPO	OSED LIMITS	Order 98-052 Order 96-05
CTR# DATE Units (p.7) LTA s	ECA	L		
19 Benzene μg/L 20 Bromoform μg/L 21 Carbon Tetrahloride μg/L 22 Chlorobenzene μg/L 23 Dibromochloromethane μg/L 24 Chloroethane μg/L 25 2-chloroethyl vinyl ether μg/L 26 Chloroform μg/L 27 Dichlorobromomethane μg/L 28 1,1-Dichloroethane μg/L 30 1,1-Dichloroethane μg/L 31 1,2-dichloroethylene μg/L 32 1,3-dichloropropylene μg/L 33 Ethylbenzene μg/L 34 Methyl bromide μg/L 35 Methyl chloride μg/L 36 Methyl chloride μg/L	chronic LTA Lowest	plier MDEL Lowest	Lowest Recommendation	Mo Daily Mo Dail
20 Bromoform μg/L 21 Carbon Tetrahloride μg/L 22 Chlorobenzene μg/L 23 Dibromochloromethane μg/L 24 Chloroethane μg/L 25 2-chloroethyl vinyl ether μg/L 26 Chloroform μg/L 27 Dichlorobromomethane μg/L 28 1,1-Dichloroethane μg/L 29 1,2-dichloroethane μg/L 30 1,1-Dichloroethylene μg/L 31 1,2-dichloropropylene μg/L 32 1,3-dichloropropylene μg/L 33 Ethylbenzene μg/L 34 Methyl bromide μg/L 35 Methyl chloride μg/L 36 Methyl chloride μg/L 36 Methylene chloride μg/L			Interim Monitoring - No Limit	
21 Carbon Tetrahloride μg/L 22 Chlorobenzene μg/L 23 Dibromochloromethane μg/L 24 Chloroethane μg/L 25 2-chloroethyl vinyl ether μg/L 26 Chloroform μg/L 27 Dichlorobromomethane μg/L 28 1,1-Dichloroethane μg/L 29 1,2-dichloroethane μg/L 30 1,1-Dichloroethylene μg/L 31 1,2-dichloropropylene μg/L 32 1,3-dichloropropylene μg/L 33 Ethylbenzene μg/L 34 Methyl bromide μg/L 35 Methyl chloride μg/L 36 Methylene chloride μg/L			Workship To Elim	
22 Chlorobenzene μg/L 23 Dibromochioromethane μg/L 24 Chloroethane μg/L 25 2-chloroethyl vinyl ether μg/L 26 Chloroform μg/L 27 Dichlorobromomethane μg/L 28 1,1-Dichloroethane μg/L 29 1,2-dichloroethane μg/L 30 1,1-Dichloroethane μg/L 31 1,2-dichloropropane μg/L 32 1,3-dichloropropylene μg/L 33 Ethylbenzene μg/L 34 Methyl bromide μg/L 35 Methyl chloride μg/L 36 Methylene chloride μg/L			Interim Monitoring - No Limit	100 - stayed
22 Chlorobenzene μg/L 23 Dibromochloromethane μg/L 24 Chloroethane μg/L 25 2-chloroethyl vinyl ether μg/L 26 Chloroform μg/L 27 Dichlorobromomethane μg/L 28 1,1-Dichloroethane μg/L 29 1,2-dichloroethane μg/L 30 1,1-Dichloroethylene μg/L 31 1,2-dichloropropane μg/L 32 1,3-dichloropropylene μg/L 33 Ethylbenzene μg/L 34 Methyl bromide μg/L 36 Methyl chloride μg/L 36 Methylene chloride μg/L			Interim Monitoring - No Limit	
23 Dibromochloromethane μg/L 0.643 NA 24 Chloroethane μg/L 25 2-chloroethyl vinyl ether μg/L 26 Chloroform μg/L 27 Dichlorobromomethane μg/L 0.643 NA 28 1,1-Dichloroethane μg/L 29 1,2-dichloroethane μg/L 30 1,1-Dichloroethylene μg/L 31 1,2-dichloropropylene μg/L 32 1,3-dichloropropylene μg/L 33 Ethylbenzene μg/L 34 Methyl bromide μg/L 35 Methyl chloride μg/L 36 Methylene chloride μg/L			Interim Monitoring - No Limit	
23 Dibromochloromethane μg/L 0.643 NA 24 Chloroethane μg/L 25 2-chloroethyl vinyl ether μg/L 26 Chloroform μg/L 27 Dichlorobromomethane μg/L 28 1,1-Dichloroethane μg/L 30 1,1-Dichloroethane μg/L 31 1,2-dichloropropane μg/L 31 1,2-dichloropropylene μg/L 32 1,3-dichloropropylene μg/L 33 Ethylbenzene μg/L 34 Methyl bromide μg/L 35 Methyl chloride μg/L 36 Methylene chloride μg/L			Need Limit (Tier 1) RP to exceed	
24 Chloroethane μg/L 25 2-chloroethyl vinyl ether μg/L 26 Chloroform μg/L 27 Dichlorobromomethane μg/L 28 1,1-Dichloroethane μg/L 29 1,2-dichloroethane μg/L 30 1,1-Dichloroethylene μg/L 31 1,2-dichloropropylene μg/L 32 1,3-dichloropropylene μg/L 33 Ethylbenzene μg/L 34 Methyl bromide μg/L 35 Methyl chloride μg/L 36 Methylene chloride μg/L	0.797 NA NA	1.55 NA 34.0	CTR Human health organisms 4.0 45.2 only criteria	100
25 2-chloroethyl vinyl ether µg/L 26 Chloroform µg/L 27 Dichlorobromomethane µg/L 28 1,1-Dichloroethane µg/L 29 1,2-dichloroethane µg/L 30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropane µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L		1.55 144 54.	7.0 45.2 Only Chena	stayed
26 Chloroform 27 Dichlorobromomethane 28 1,1-Dichloroethane 29 1,2-dichloroethane 29 1,2-dichloroethane 30 1,1-Dichloroethylene 31 1,2-dichloropropylene 32 1,3-dichloropropylene 32 1,3-dichloropropylene 4g/L 33 Ethylbenzene 4g/L 34 Methyl bromide 4g/L 35 Methyl chloride 4g/L 36 Methylene chloride 4g/L			No Limit - No Criteria Available	· .
26 Chloroform µg/L 27 Dichlorobromomethane µg/L 28 1,1-Dichloroethane µg/L 29 1,2-dichloroethane µg/L 30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropylene µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L		_	- No Limit - No Criteria Available	
27 Dichlorobromomethane µg/L 0.643 NA 28 1,1-Dichloroethane µg/L 29 1,2-dichloroethane µg/L 30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropylene µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L				100
28 1,1-Dichloroethane µg/L 29 1,2-dichloroethane µg/L 30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropane µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L			No Limit - No Criteria Available	stayed
28 1,1-Dichloroethane µg/L 29 1,2-dichloroethane µg/L 30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropane µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L			Need Limit (Tier 1) RP to exceed CTR Human health organisms	100
29 1,2-dichloroethane µg/L 30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropane µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L	0.797 NA NA	1.55 NA 40	46 61 only criteria	stayed
30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropane µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L			Interim Monitoring - No Limit	
30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropane µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L				0.5
30 1,1-Dichloroethylene µg/L 31 1,2-dichloropropane µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L			Interim Monitoring - No Limit	stayed
31 1,2-dichlooropropane µg/L 32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L		_	Interim Monitoring - No Limit	
32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L			Interim Monitoring - No Limit	
32 1,3-dichloropropylene µg/L 33 Ethylbenzene µg/L 34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L			Interim Monitoring - No Limit	
34 Methyl bromide µg/L 35 Methyl chloride µg/L 36 Methylene chloride µg/L				700
35 Methyl chloride μg/L 36 Methylene chloride μg/L		- -	Interim Monitoring - No Limit	stayed
36 Methylene chloride µg/L		<u> </u>	Interim Monitoring - No Limit	
· · · · · · · · · · · · · · · · · · ·			No Limit - No Criteria Available	
· · · · · · · · · · · · · · · · · · ·			Interim Monitoring - No Limit	5 stayed
	,			
37 1,1,2,2-tetrachiroethane µg/L			Interim Monitoring - No Limit	
38 Tetrachloroethylene µg/L			Interim Monitoring - No Limit	5 stayed

<u>.</u>			·			CTR CF	TEDIA		T	· · · · · ·	· · · · · · · · · · · · · · · · · · ·							T WINGAN UP	AL TIL CAL O	II ATIONO
1			i			CIRCH	ITERIA		1	* .	REAS	ONABLE	POTENTI	AL ANALY	SIS (RPA	a		HUMAN HE	ALTH CALC	JLATIONS
		1	1		Fresh	water	Human I	Health	Basin Plan							-7		}	Organisns O	Inly
CTR	DATE	Units	cv	MEC	C acute = CMC tot	C chronic = CCC tot	Not applicable C hh W&O	C hh O	Title 22 GWR	Lowest C	MEC >= Lowest C	Tier 1 - Need limit?	В	B>C & present in Effl.	Tier 2 - Need limit?	Tier 3 - other info. ?	Tier 3 - need limit?	AMELHH = ECA = C hh	MĎEL/	MDEL hh
								* * * * * *.				Go to			Go to	. ;				
3	Toluene	μġ/L	. 0.6	<0.5	NONE	NONE	6800	200,000	150	150	NO	Tier 2	0.26	No	tier 3	NO	NO			<u> </u>
4	Trans 1,2-Dichloroethylene	μg/L	0.6	<0.5	NONE	NONE	700	140,000	10	10	NO .	Go to Tier 2	<0.5	No		NO	NO .			
١,	1 1,1,1-Trichloroethane	μg/L		<0.5	NONE	NONE	Narrative	Narrative	200	200	NO	Go to Tier 2	<0.5	No	Go to	NO	NO			'
—	1 1,1,1-Themoreemane	μg/L ·	0.0		NONE .		Namanve	·	200	200		Go to	₹0.5	INU	Go to	INO	NO -	 		
4	2 1,1,2-trichloroethane	μg/L	0.6	<0.5	NONE	NONE	0.6	42	5	5	NO	Tier 2	<0.5	No		NO	NO .	<u> </u>		
1 4	3 Trichloroethylene	μg/L	0.6	<0.5	NONE	NONE	2.7	. 81	. 5	5	NO	Go to Tier 2	<0.5	No	Go to tier 3	ΝO	NO			
ļ -	Michigraethylene	P9'	- 0.0									Go to	10.0	110	· Go to	110	INO	 	<u> </u>	
4	1 Vinyl chloride	μg/L	0.6	<0.5	NONE	NONE	. 2	525	0.5	0.5	NO	Tier 2	<0.5	No		NO	ИО			
4	5 2-chlorophenol	μg/L	0.6	<2	NONE .	NONE	120	400		400	NO	Go to Tier 2	<2	No	Go to	NO	NO			
		1		· ·						7.		Go to			Go to			 	 	
4	2,4-dihlorophenol	μg/L	0.6	<1	NONE .	NONE	93	790		790	NO	Go to	<1	No	tier 3 Go to	NO	NO			· .
4	7 2,4-dimethylphenol	μg/L	0.6	<2	NONE	NONE .	540	2,300		2,300	NO	Tier 2	<2	No		NO ·	NO		i '	•,
	4,6-dinitro-o-resol																	<u> </u>		
۱ ,	(aka2-methyl-4,6- B Dinitrophenol)	μg/L	0.6	S <5	NONE	NONE	13.4	765		765	NO	Go to Tier 2	<5	No.	Go to	NO	NO			
	S Dillit Opherior)	μg/L	1 0.0	, 23	NONE	NONE	10.4	700	 	700		Go to		140	Go to	INO	INC		 	
4	9 2,4-dinitrophenol	μg/L	0.6	<5	NONE	NONE	70	14,000		14,000		Tier 2	<5	No		NO	NO			
5	0 2-nitrophenol	 μg/L	0.6	i <2	NONE	NONE	NONE	NONE	· .	None	No Criteria Available	Go to Tier 2	<2	No	Go to	NO .	NO			
<u> </u>	Z-IIII oprierioi	рус	1 0.0	-	NONE	NONE	HORL	1101112			No Criteria	Go to		110	Go to	140	INO .			
5	4-nitrophenol	μg/L	0.6	<2	NONE	NONE	NONE	NONE		None	Available	Tier 2	0.5	No		ΝO	NO	<u> </u>	* * * * * * * * * * * * * * * * * * * *	ļ
5	3-Methyl-4-Chlorophenol 2 (aka P-chloro-m-resol)	μg/L	0.6	<1	NONE	NONE	NONE	NONE		None	No Criteria Available	Go to Tier 2	9.3	No	Go to	NO	NO			ļ !
<u> </u>	Liquid F Critoro III Todoly	P9'-	0.0		TOTAL T							Go to			Go to	1		<u> </u>	· ·	
5	Pentachlorophenol	μg/L	0.6	<1	pH dependent	pH dependent	0.28	8.2	1	1	NO	Tier 2 Go to	0.6	No		NO	NO	<u> </u>		<u></u>
5	Phenol	μg/L	0.6	i <1	NONE	NONE	21,000	4,600,000		4.6x10^6	NO .	Tier 2	<1	No	Go to	NO	NO			1.
					•							Go to			Go to	,		1	l i	1 -
5	5 2,4,6-trihlorophenol	μg/L	0.6	<5	NONE	NONE	2.1	6.5	ļ	6.5	NO.	Tier 2 Go to	<5	No	Go to	NO	NO	 	 · · · ′	+
5	Acenaphthene	μg/L.	0.6	<2	NONE	NÓNE	1200	2,700		2,700		Tier 2	<5	No	tier 3	NO .	NO .			
_	7 A annumble dan -		0.0		NONE	NONE	NONE	NONE		NONE	No Criteria Available	Go to Tier 2	- <2	At-	Go to	NO.	NO			
-	7 Acenaphthylene	μg/L	0.6	<2	NONE	NONE	NUNE	NONE		INONE	Available	Go to	<u> </u>	No	tier 3	NO	NO	 	 	+
5	Anthracene	μg/L	0.6	<2	NONE	NONE	9600	110,000	l	110,000	NO :	Tier 2	<0.1	No	tier 3	NO .	NO			
1 _	Jn				NONE	NONE	0.00010	0.00054	1	0.00054	ND C	Go to			Go to		110			
- 5	Benzidine	µg/L	0.6	<5	NONE	NONE	0.00012	0.00054		0.00054	טארווון)	Tier 2 Go to	<5	No	tier 3	NO	NO			
- 6	Benzo(a)Anthracene	μg/L	0.6	<2	NONE	NONE	0.0044	0.049	ļ	0.049	ND>C	Tier 2	<5	No	tier 3	NO	NO			
۱, ۵	Benzo(a)Pyrene	μg/L		<2	NONE	NONE	0.0044	0.049	<u> </u> .	0.049	NO	Go to Tier 2	<2	No	Go to	NO	NO			1.
1.8	· ·	μy/L	0.0	\ <u><</u>	NONE	INCINE	0.0044	0.049		0.049	NO	Go to		170	Go to	INU.	INU	<u> </u>		
6:	Benzo(b)Fluoranthene	μg/L	0.6	<2	NONE	NONE	. 0.0044	0.049	l ·	0.049	NO	Tier 2	<5	No) .	NO	NO	<u> </u>		

8/31/06 Revised 10/30/06

	· · · · · · · · · · · · · · · · · · ·	Γ		AQUATIC L	IFE CALCUL	ATIONS		AQUA	TIC LIFE	CALCULATION	ONS				Pr	evious F	ermit L	mits
1				. F	reshwater			} :	Fresi	hwater	٠.	PROPOS	SED LIMITS		Order	98-052	Order	96-050
CTR#	DATE	Units	ECA acute multiplier (p.7)	LTA acute	ECA chronic	LTA	Lowest LTA	AMEL multiplier (n≈4)	AMEL aq.life	MDEL muitiplier (n=4)	MDEL aglife	Lowest AMEL	Lowest MDEL	 Recommendation	Mo Ave	Daily Max	Mo Ave	Daily Max
																150		
	Toluene Trans 1,2-Dichloroethylene	μg/L μg/L		-	:							 	_	Interim Monitoring - No Limit Interim Monitoring - No Limit	 -	stayed		
	1 1,1,1-Trichloroethane	μg/L												Interim Monitoring - No Limit			-	1.
42	2 1,1,2-trichloroethane	μg/L					<u> </u>					 .		Interim Monitoring - No Limit				
43	3 Trichloroethylene	µg/L											ļ <u>. </u>	Interim Monitoring - No Limit	ļ.,		ļ	<u> </u>
44	Vinyl chloride	μg/L				-	1 .:		· ·		-		-	Interim Monitoring - No Limit	+	ļ .		—
	2-chlorophenol	µg/L 		 		-		-			ļ			Interim Monitoring - No Limit	+-			+-
	2,4-dihlorophenol	μg/L μg/L											-	Interim Monitoring - No Limit Interim Monitoring - No Limit	+		<u> </u>	-
	4,6-dinitro-o-resol (aka2-methyl-4,6-			,											1	1		-
	Dinitrophenol)	μg/L μg/L						 			1 1	-	-	Interim Monitoring - No Limit Interim Monitoring - No Limit		 	1	-
	2-nitrophenol	μg/L											-	No Criteria Available				
51	4-nitrophenol 3-Methyl-4-Chlorophenol	μg/L												No Criteria Available				
. 52	2 (aka P-chloro-m-resol)	μg/L		· · ·		·	 					`	-	No Criteria Available	-		ļ 	ļ
	3 Pentachlorophenol	μg/L		-				<u> </u>						Interim Monitoring - No Limit	+-	1		-
	Phenol 2,4,6-trihlorophenol	μg/L	-	-	<u> </u>			 	-		· ·	-		Interim Monitoring - No Limit Interim Monitoring - No Limit	 	1.	-	+
	6 Acenaphthene	μg/L μg/L		<u> </u>									.	Interim Monitoring - No Limit		-	1	T
	7 Acenaphthylene	μg/L	•											No Criteria Available				
58	Anthracene	μg/L			٠.							_		Interim Monitoring - No Limit		1.	ļ	
59	Benzidine	μg/L		<u>.</u>	<u> </u>	. :	ļ <u>.</u>							Interim Monitoring - No Limit	-	-	<u> </u>	-
	Benzo(a)Anthracene	μg/L			1	-			<u> </u>					Interim Monitoring - No Limit	 	<u> </u>		-
	Benzo(a)Pyrene	μg/L				ļ 			<u> </u>				<u></u>	Interim Monitoring - No Limit	 	-	<u> </u>	
62	Benzo(b)Fluoranthene	μg/L	<u> </u>	<u></u>	L.:	L	1	<u> </u>	<u> </u>	1		<u> </u>	1	Interim Monitoring - No Limit	<u> </u>		<u> </u>	1

<u> </u>	T	1		T	<u> </u>	CTR CI	RITERIA			T i					(0)0 (DD			HUMAN HE	ALTH CALC	ULATIONS
					Fres	hwater	Human	Health	Basin Plan	*	HEAS	ONABLE	POLENI	IAL ANALY	(SIS (RPA	4)			Organisns C) Only
CTR#	DATE	Units	cv	MEC	C acute =	C chronic =	Not applicable C hh W&O	C hh O	Title 22 GWR	Lowest C	MEC >= Lowest C	Tier 1 - Need limit?	В	B>C & present in Effl.	Tier 2 - Need limit?	Tier 3 - other info. ?	Tier 3 - need limit?	AMELhh = ECA = C hh O	MDEL/	
63	Benzo(ghi)Perylene	μg/L	0.0	6 <2	NONE	NONE	NONE	NONE		NONE	No Criteria Available	Go to Tier 2	<5	No	Go to tier 3	NO	NO			
64	Benzo(k)Fluoranthene	μg/L	0.0	6 <2	NONE	NONE	0.0044	0.049		0.049		Go to Tier 2	· <2	No	Go to tier 3	NO	NO			
. 6	Bis(2-Chloroethoxy) methane	μg/L	0.0	6 <2	NONE	NONE	NONE	NONE		NONE	No Criteria Available	Go to Tier 2	<5	No	Go to	NO	NO			
66	Bis(2-Chloroethyl)Ether	μg/L	0.0	6 <1	NONE	NONE	0.031	1.4		1.4	NO	Go to	<1	No	Go to	NO	NO			
67	Bis(2-Chloroisopropyl) Ether	µg/L	0.0	6 <1	NONE	NONE	1400	170,000		170,000	NO .	Go to Tier 2	<2	No	Go to	NO	NO			
	Bis(2-Ethylhexyl) Phthalate 4-Bromophenyl Phenyl Ether	μg/L μg/L	1.4	4 · 2 5 <2	NONE	NONE	NONE	NONE	9 . 4	NONE 4	YES No Criteria Available	Go to Tier 2	-5 <5	YES No	Go to tier 3	NO .	NO	5.9	2.83	3 17
	Butylbenzyl Phthalate	μg/L	· -	6 <2	NONE	NONE	3000	5,200		5,200		Go to Tier 2	0.9	No	Go to	NO	NO			
	:	μg/L μg/L		5 <2	NONE	NONE	1700			4,300		Go to Tier 2	<5	No	Go to	NO	NO			
	2-Chloronaphthalene 24-Chlorophenyl Phenyl Ether	μg/L		5 <2	NONE	NONE	NONE	NONE		NONE	No Criteria Available	Go to Tier 2	<5	No	Go to	NO	NO	ļ		
	Chrysene	μg/L		5 <2	NONE	NONE	0.0044			0.049	1	Go to Tier 2	<0.3	No	Go to tier 3	NO	NO	İ		1
	Dibenzo(a,h)Anthracene	μg/L		3	NONE	NONE	0.0044	0.049		0.049		Go to Tier 2	<0.6	No	Go to	NO	NO			
	1,2-Dichlorobenzene	μg/L		6 < 0.5	NONE	NONE	2700	17,000	600	600	NO	Go to Tier 2	<0.5	No	Go to tier 3	NO	NO			
76	1,3-Dichlorobenzene	μg/L	0.0	6 <0.5	NONE	NONE	400	2,600		2,600	NO	Go to Tier 2	<0.5	No	Go to tier 3	NO	NO			
77	1,4-Dichlorobenzene	μg/L	0.		.1 NONE	NONE	400	2,600	5	5	NO	Go to	0.4	No	Go to	NO	NO			
	3,3'-Dichlorobenzidine	μg/L		6 <5	NONE	NONE	0.04			1.	ND>C	Go to Tier 2	<0.5	No	Go to tier 3	NO	NO	· ·	:	
79	Diethyl Phthalate	μg/L	0.0	5 <2	NONE	NONE	23000	120,000		120,000	NO	Go to Tier 2	<2	No	Go to tier 3	NO	NO			
80	Dimethyl Phthalate	μg/L	0.6	6 <2	NONE	NONE	313000	2,900,000		2.9x10^6	NO	Go to Tier 2	<2	No	Go to tier 3	NO	NO			
81	Di-n-Butyl Phthalate	μg/L	0.6	6 <2	NONE	NONE	2700	12,000		12,000	NO	Go to Tier 2	7.7	No	Go to. tier 3	NO	NO	,		
82	2,4-Dinitrotoluene	μg/L	0.6	3 <2 ·	NONE	NONE	0.11	9.1		9.1	NO .	Go to Tier 2	<5	No	Go to tier 3	NO	NO			
83	2,6-Dinitrotoluene	μg/L	0.6	3 <2	NONE	NONE	NONE	NONE		NONE	No Criteria Available	Go to Tier 2	<5	No	Go to	NO	NO			
84	Di-n-Octyl Phthalate	μg/L	0.6	6 <2 ·	NONE	NONE	NONE	NONE		NONE	No Criteria Available	Go to Tier 2	2	No	Go to	NO	NO		1	

8/31/06 Revised 10/30/06

				AQUATIC L	IFE CALCUI	ATIONS		AQUA	TIC LIFE	CALCULATI	ONS .	1 .			Pre	evious P	ermit Li	imits
.					Freshwater		-	·	Fres	hwater		PROPO	SED LIMITS		Order 9	98-052	Order	96-050
			ECA acute multiplier		ECA chronic	LTA	Lowest	AMEL multiplier	AMEL	MDEL multiplier	MDEL	Lowest	Lowest		Mo	Daily	Мо	Daily
CTR#	DATE	Units	(p.7)	LTA acute	multiplier	chronic	LTA	(n=4)	aq.life	(n=4)	aqlife	AMEL	MDEL	Recommendation	Ave	Max	Ave	Max
. 63	Benzo(ghi)Perylene	μg/L	.:	<u>.</u>										No Criteria Available	<u> </u>			
64	Benzo(k)Fluoranthene	μg/L											<u></u>	Interim Monitoring - No Limit	<u>L</u>		<u>.</u>	
65	Bis(2-Chloroethoxy) methane	μg/L		<u> </u>										No Criteria Available				
66	Bis(2-Chloroethyl)Ether	μg/L					,.					<u></u>		Interim Monitoring - No Limit	<u></u>			
67	Bis(2-Chloroisopropyl) Ether	μg/L.				1								Interim Monitoring - No Limit				
				İ .														
	·	, ·						1						Need limit (Tiers 1 & 2). RP to exceed CTR human health				
						\ ·. ·							1 .	criteria for surface water & RP to exceed Basin Plan 4 µg/L WQO	1 .	4	ļ	
_68	Bis(2-Ethylhexyl) Phthalate	μg/L.		· · · · · · · · · · · · · · · · · · ·		<u> </u>				ļ	ļ:	5.9	17	for GWR protection.	-	stayed	ļ	
. 69	4-Bromophenyl Phenyl Ether	μg/L	·			ļ	ļ			ļ.	<u> </u>	<u>-</u>		No Criteria Available	ļ		· .	
70	Butylbenzyl Phthalate	µg/L						ļ ·		ļ	1	-	<u></u>	Interim Monitoring - No Limit	<u> </u>	<u> </u>	Ŀ	<u> </u>
71	2-Chloronaphthalene	μg/L.								ļ		<u>-</u>	 ., ·	Interim Monitoring - No Limit	<u> </u>	ļ	<u> </u>	<u> </u>
72	4-Chlorophenyl Phenyl Ether	μg/L								<u> </u>				No Criteria Available	<u> </u>		<u> </u>	
73	Chrysene	μg/L				<u> </u>	·	<u></u>	<u></u>	<u> </u>		-		Interim Monitoring - No Limit	<u> </u>		<u> </u>	
74	Dibenzo(a,h)Anthracene	μg/L			-					<u> </u>	ļ	<u> ··</u>	 .	Interim Monitoring - No Limit		ļ	ļ	
75	1,2-Dichlorobenzene	μg/L				ļ		<u> </u>						Interim Monitoring - No Limit		·	ļ	
76	1,3-Dichlorobenzene	μg/L		·									<u></u>	Interim Monitoring - No Limit	<u> </u>			
		· ·					,			·						5		
77	1,4-Dichlorobenzene	μg/L	<u> </u>	 	- · · ·	 		-	 	1:		 -		Interim Monitoring - No Limit	-	stayed	 	+
78	3,3'-Dichlorobenzidine	μg/L	<u> </u>						<u> </u>	 	ļ			Interim Monitoring - No Limit	<u> </u>	ļ <u>.</u>		+
79	Diethyl Phthalate	μg/L					1	-		 	ļ. <u> </u>	 	ļ	Interim Monitoring - No Limit	ļ	· · ·	<u> </u>	+
80	Dimethyl Phthalate	µg/L				ļ	<u> </u>	ļ		1	1.	ļ .	ļ	Interim Monitoring - No Limit	ļ · · ·		 	<u> </u>
81	Di-n-Butyl Phthalate .	μg/L	· · ·	<u> </u>	ļ	-	<u> </u>	<u> -</u>	<u> </u>	ļ		ļ		Interim Monitoring - No Limit		ļ.	<u> </u>	
82	2,4-Dinitrotoluene	μg/L	-					ļ		<u> </u>				Interim Monitoring - No Limit	ļ	<u> </u>	<u> </u>	
. 83	2,6-Dinitrotoluene	μg/L								ļ	<u> </u>		-	No Criteria Available	<u> </u>		<u> </u>	<u> </u>
84	Di-n-Octyl Phthalate	μg/L					<u> </u>		<u> </u>				<u></u> .	No Criteria Available				

		т	Τ			CTR CF	RITERIA								····		•	HUMAN HE	ALTH CALC	PATIONS
		l ·			· ·						REAS	ONABLE	POTENTI	AL.ANALY	SIS (RPA	N)		TOMPACTIC		LATIONS
CTR#	DATE	Units	CV	MEC	Frest C acute = CMC tot	C chronic =	Human Not applicable C hh W&O		Basin Plan Title 22 GWR	Lowest C	MEC >= Lowest C	Tier 1 - Need limit?	В	B>C & present in Effl.	Tier 2 - Need limit?	Tier 3 - other info. ?	Tier 3 - need	AMELAH = ECA = Chh	1	
			1	1			· .					Go to	1	III EIII.	Go to		limit?	0	multiplier	MDEL hh
85	1,2-Diphenylhydrazine	μg/L	0.6	3 <1	NONE	NONE	0.04	0.54		0.54	NO	Tier 2 Go to	<1	 	tier 3 Go to	NÖ	МО	<u> </u>		
86	Fluoranthene	μg/L	0.6	6 <2 ·	NONE	NONE	300	370		370	NO	Tier 2	0.1	No	tier 3	NO:	NO			
87	Fluorene	μg/L	0.6	<2_	NONE	NONE	1300	14,000		14,000	.NO	Go to Tier 2	<0.4	No	Go to	NO	NO		ľ	
88	Hexachlorobenzene	μg/L	0.6	3 <1	NONE	NONE	0,00075	0.00077		0.00077	ND-C	Go to Tier 2	<1	No	Go to	NO	NO			
					-							Go to		_	Go to	1.		 		+
89	Hexachlorobutadiene	μg/L	0.6	3 <1	NONE	NONE	0.44	50		50	NO	Tier 2 Go to	<1	No ·	tier.3	NO	NO .	-		ļ
90	Hexachlorocyclopentadiene	μg/L	0.6	3 <1	NONE	NONE	240	17,000	,	17,000	NO	Tier 2	<1	Nó	tier 3	NO	NO		ļ	
91	Hexachloroethane	μg/L	0.6	<2	NONE	NONE	1.9	8.9		8.9	NO	Go to Tier 2	~1	No	Go to tier 3	NO	NO			
92	Indeno(1,2,3-cd)Pyrene	μg/L	n.e	5 <2	NONE	NONE	0.0044	0.049		0.049	NO :	Go to Tier 2	<2	No	Go to tier 3	NO	NO			1
32	Indeno(1,2,5-cd)r yrene	Iµg/L	0.0	,,,,,,							· · · · · · · · · · · · · · · · · · ·	Go to	- « <u>«</u>	INU	Go to	INO	INU			
93	Isophorone	μg/L	0.6	5 < 1	NONE	NONE	8.4	. 600		600	NO No Criteria	Tier 2 Go to	<1 .	No	tier 3 Go to	NO	NO			
94	Napthalene	μg/L	0.6	<0.5	NONE	NONE	NONE .	NONE		NONE	Available	Tier 2	<0.5	No	tier 3	NO	NO .		· ·	1.
95	Nitrobenzene	μg/L	0.6	S <1	NONE	NONE	17	1,900		1,900	NO	Go to Tier 2	<1	No	Go to	NO	NO			· · · · · ·
-												Go to			Go to					
96	N-Nitrosodimethylamine	μg/L	0.6	6 <2	NONE	NONE	0.00069	8.1		8.1	NO	Tier 2 Go to	<5	No	Go to	NO	NO ·	-		
97	N-Nitrosodi-n-Propylamine	μg/L	0.6	<2	NONE	NONE	0.005	1.4		1.4	NO	Tier 2 Go to	<5	· No	tier 3 Go to	NO	NO	ļ <u>.</u>		ļ
98	N-Nitrosodiphenylamine	μg/L	0.6	3 <1	NONE	NONE	5	16		16	NO	Tier 2	<1	. No	tier 3	NÒ	NO.			
99	Phenanthrene	μg/L	0.6	S <2	NONE	NONE	NONE	NONE		NONE	No Criteria Available	Go to Tier 2	0.06	NA NA	Go to	NO	NO		_	
	:					÷						Go to			. Go to					
100	Pyrene ·	μg/L	0.6	<2	NONE	NONE	960	11,000		11,000	NO Criteria	Tier 2 Go to	<2_	No	Go to	NO	NO .	<u> </u>	·	+-
101	1,2,4-Trichlorobenzene	μg/L	0.6	<2	NONE	NONE	NONE	NONE		NONE	Available	Tier 2	<5_	NA .	tier 3	NO	NO	<u> </u>	<u>. </u>	
102	Aldrin	μg/L	0.6	<0.005	. 3	NONE	0.00013	0.00014		0.00014	ND>C	Go to Tier 2	<0.005	No	Go to tier 3	NO .	NO ·		-	
100	alpha-BHC			<0.005	NONE	NONE	0.0039	0.013		0.013	NO	Go to Tier 2	<0.005	· . No	Go to tier 3	NO	NO .			
	beta-BHC	μg/L		<0.005	NONE	NONE	0.0039	0.013		0.046		NO .	<0.005	, 140	1101 3	INO	INO	 		
104	nera-pur	μg/L	0.0				0.014	0.040		3.046			20.005				 : -	 		
40=	gamma-BHC (aka Lindane)	sin/t	0.6	0.088	0.05	NONE	0.019	0.063	0.2	0.063	VES	YES	0.021					0.063	2.01	0.1
		μg/L							0.2		No Criteria	Go to			Go to			0,063	2.01	† · · · · ·
106	delta-BHC	μg/L	0.6	<0.005	NONE	NONE :	NONE	NONE		NONE	Available	Tier 2 Go to	<0.005	No	tier 3 Go to	NO	NO		 	+
107	Chlordane	μg/L	0.6	<0.5	2.4	0.0043	0.00057	0.00059		0.00059	ND>C	Tier 2 Go to	<0.2	No -	tier 3 Go to	NO	NO			
108	4,4'-DDT	ug/L	0.6	<0.005	1.1	0.001	0.00059	0.00059	/	0.00059	ND>C	Tier 2	<0.005	No	tier 3	NO	NO]	

· · · · · · · · · · · · · · · · · · ·			AQUATIC L	IFE CALCUL	ATIONS		AQUA	TIC LIFE	CALCULATI	ONS	J		l	Pre	vious P	ermit Li	imits
					,					•]						
		ECA acute	<u> </u>	reshwater ECA	 	1	AMEL.	res	hwater MDEL	1	PROPO	SED LIMITS		Order 9	98-052	Order	96-050
		multiplier		chronic	LTA ·	Lowest	multiplier	AMEL	multiplier	MDEL	Lowest	Lowest		Мо	Daily	Мо	Daily
TR# DATE	Units	(p.7)	LTA acute	multiplier	chronic	LTA	(n=4)	aq.life	(n=4)	aqlife	AMEL	MDEL	Recommendation	Avė	Max	Ave .	Max
85 1,2-Diphenylhydrazine	μg/L								1.		_	:	Interim Monitoring - No Limit. RPA incomplete, need B.				
	μg/L												Interim Monitoring - No Limit				1
						 					 	ļ -		+		<u> </u>	+
87 Fluorene	μg/L		ļ			 			 	1	 	+	Interim Monitoring - No Limit	 			+-
88 Hexachlorobenzene	μg/L					1				ļ	<u> :</u>	<u> - </u>	Interim Monitoring - No Limit	<u> </u>	<u>.</u>		<u> </u>
89 Hexachlorobutadiene	μg/L					.:	<u> </u>						Interim Monitoring - No Limit				
90 Hexachlorocyclopentadiene.	μg/L									1.		<u></u>	Interim Monitoring - No Limit				
	μg/L	1.5	-		-								Interim Monitoring - No Limit		,		1
	μg/L							T	.:			_	Interim Monitoring - No Limit				
32 Indeno(1,2,3-cu)r yrene	µy/L		 			ļ	1	 	 					 	 		+-
93 Isophorone	μg/L			* .				<u></u>		 	ļ 		Interim Monitoring - No Limit	+	ļ		┿
94 Napthalene	μg/L				, :	ļ <u>.</u>	<u> </u>				<u></u> .	<u></u> ·	No Criteria Available	<u> </u>	ļ	· .	ــــــــــــــــــــــــــــــــــــــ
95 Nitrobenzene	μg/L									<u> </u>			Interim Monitoring - No Limit				Ŀ
96 N-Nitrosodimethylamine	μġ/L												Interim Monitoring - No Limit				
97 N-Nitrosodi-n-Propylamine	μg/L					İ	ŀ	1			_		Interim Monitoring - No Limit				
	μg/l.				·							-	Interim Monitoring - No Limit				
	μg/L									· ·			Interim Monitoring - No Limit				1
							-	1					Interim Monitoring - No Limit		İ	•	+
100 Pyrene	μg/L ·		 				<u> </u>			 					 		+
101 1,2,4-Trichlorobenzene	μg/L				ļ	ļ. ·	ļ	 		 			Interim Monitoring - No Limit	—	<u> </u>		+
102 Aldrin	μg/L									.			Interim Monitoring - No Limit	<u> </u>	,		1_
103 alpha-BHC	μg/L										-		Interim Monitoring - No Limit				
104 beta-BHC	μg/L										- -		Interim Monitoring - No Limit				$\prod_{i=1}^{n}$
5112					-								Need Limit (Tier 1) RP to exceed			-	
gamma-BHC 105 (aka Lindane)	μg/L	0.321	0.30495	0.527	#VALUE!	0.305	1.55	0.47275	3.1	0.94855	0.06	0.13	CTR Human health organisms only criteria	0.08 stayed	0.2 stayed		
106 delta-BHC	μg/L												Interim Monitoring - No Limit				
107 Chlordane	μg/L_												Interim Monitoring - No Limit				
108 4,4'-DDT	μg/L									1			Interim Monitoring - No Limit				-

· ·	<u> </u>	· 			· · · · · · · · · · · · · · · · · · ·	CTR CR	ITERIA		,					.				HUMAN HE	ALTH CALC	II ATIONS
1		· .				0.11.01		:	,		REAS	ONABLE I	POTENTI	AL ANALY	SIS (RPA	A)		HOMARTIL	ALIII OALOG	LATIONS
1					Fresh	nwater	Human	Health	Basin Plan			• '			•				Organisns O	nly
												Tier 1 -		B>C &	Tier 2 -	Tier 3 -	Tier 3 -	AMELhh ≈	MDEL	
					C acute =		Not applicable		Title 22		MEC >=	Need	_	present	Need	other	need	ECA = Chh		L
CTR	DATE	Units_	CV	MEC	CMC tot	CCC tot	C hh W&O	C hh O	GWR	Lowest C	Lowest C.	limit? Go to	В	in Effl.	limit? Go to	info. ?	limit?	0	multiplier	MDEL hh
10	94,4'-DDE	μg/L	0.6	<0.005	NONE	NONE	0.00059	0.00059		0.00059	NO	Tier 2	<0.005	. No	tier 3	NO	NO			
1	1:	J-3					,					Go to	10.000	1	Go to		1		 	
110	4,4'-DDD	μg/L	0.6	<0.005	NONE	NONE	0.00083	0.00084		0.00083	ND>C	Tier 2	<0.005	No	tier 3	NO	NO	<u>. </u>	·	
l	10:41:			0.005	0.24	0.050		0.00044		0.00044	lup o	Go to			Go to					
	1 Dieldrin	μg/L	0.6	<0.005	0.24	0.056	0.00014	0.00014	ļ	0.00014	INDSC	Tier 2 Go to	<0.02	No .	Go to	NO	NO	 		-
111	2 alpha-Endosulfan	μg/L	0.6	<0.005	0.22	0.056	. 110	240		0.056	NO	Tier 2	<0.005	No	tier 3	NO.	NO	1 "		
												Go to	1		Go to	T			· ·	
11:	3 beta-Endosulfan	μg/L	0.6	<0.005	0.22	0.056	110	240		0.056	NO	Tier 2	<0.005	No	tier 3	NO	NO			
1 44	4 Endosulfan Sulfate	μg/L		<0.005	NONE	NONE	110	240		. 940	NO	Go to Tier 2	<0.005	No	Go to	NO -	ЙO			
	+ Endosulan Sunate	μg/L	0.0	K0.005 .	NONE	NONE		240		. 240	NO	1101 &	<0.003	INO	uero	INO	INO	 	- · -	
										1			ł		1				1	
		,			1					·	1	1		-	i				·	' '
			ŀ					٠.				,		1	,			1		
1								,		}		Go to			Go to					•
1 :11	5 Endrin	μg/L	0.6	<0.005	0.086	0.036	0.76	0.81		0.036	NO	Tier 2	<0.01	. No	tier 3	NO	NO			
												Go to			Go to		1			
11	Endrin Aldehyde	μg/L	0.6	<0.005	JNONE	NONE .	0.76	0.81		0.81	NO	Tier 2	<0.01	No	tier 3	NO	NO		• •	
١.,	7 Heptachlor	μg/L	0.0	<0.005	0.52	0.0038	0.00021	0.00021		0.00021	ND-C	Go to Tier 2	<0.005	No	Go to	NO	NO]
 ''	Перкасто	μy/L	0.0	0.005	0.02	0.0058	0.00021	0.00021		0.00021	INDSO	Go to	<0.005	140	Go to	INO	, NO		 	
110	Heptachlor Epoxide	μg/L	0.6	<0.005	0.52	0.0038	0.0001	0.00011		0.00011	ND>C	Tier 2	<0.005	No	tier 3	NO	NO	1.		
	Polychlorinated biphenyls														Go to	1	-			
<u> </u>	(PCBs)	μg/L	ļ	<u> </u>								Go to	<u> </u>		tier 3	NO	NO			-
111	Aroclor 1016	μg/L	0.6	<0.2	NONE	0.014	0.00017	0.00017	1.1	0.00017	NDSC .	Tier 2	<0.2	No	Go to	NO.	NO	1		- 1
	A A COLOT 1010	149/1	0.0	10.E	HONE		0.00017	0.00017	<u> </u>	- 0.000,17	1.220	Go to	10.2	1.0	Go to	110		1		10.0
12	Aroclor 1221	μg/L	0.6	<0.2	NONE	0.014	0.00017	0.00017		0.00017	ND>C	Tier 2	<0.2	No	tier 3	NO	NO :			
		_	·		110115		0.0001	0.00047		0.00047	lup. o	Go to	0.0	j	Go to					
12	1 Aroclor 1232	μg/L	0.6	<0.2	NONE	0.014	0.00017	0.00017		0.00017	IND>C	Tier 2 Go to	<0.2	No .	Go to	NO	NO	-	 	
12	2 Aroclor 1242	μg/L	0.6	<0.2	NONE	0.014	0.00017	0.00017	1	0.00017	ND>C	Tier 2	>0.2	No	tier 3	NO	NO	1 .	ļ.÷	
		F-3'	1	1								Go to			Go to		1	ļ		†
12	Aroclor 1248	μg/L	0.6	<0.2	NONE	0.014	0.00017	0.00017		0.00017	ND>C	Tier 2	<0.2	No	tier 3	NO	NO			
				٠.	NOVE		0.0001	0.0004-		0.00047	, n	Go to			Go to					
12	Aroclor 1254	µg/L	0.6	<0.2	NONE	0.014	0.00017	0.00017		0.00017	ואט>ט .	Tier 2 Go to	<0.2	No.	Go to	NO	NO	 	 	+
12	Aroclor 1260	μg/L	0.6	<0.2	NONE	0.014	0.00017	0.00017		0.00017	ND>C	Tier 2	<0.2	No	tier 3	NO	NO .	1		
	* * * * * * * * * * * * * * * * * * * *	1-8:	1		1.						i ,,						1 .	1		T :
1					<u>.</u>					, '		i				1 .			1	
120	Toxaphene	μg/L	0.6	_1	0.73	0.0002	0.0073	0.00075	. 3	0.00075	ND-C	Go to Tier 2	<0.2	No	Go to	NO	NO			1
***************************************	NOTE: 4					37.002	0.0073	0.00073		0.00073										

TABLE R1
Reasonable Potential Analysis and Limit Derivation
Using SIP Methodology
City of Burbank -Burbank Water Reclamation Plant
(Discharge #002 - POTW Discharge)
(CA0055531, CI#4424)

·	T			AQUATIC I	IFE CALCUI	ATIONS		AQUA	ATIC LIFE	CALCULATI	ONS		•	<u> </u>	Pro	evious P	ermit I i	mits
							. •					1			1		J.,,,,,,,	
1	,	l		I	reshwater	 			Fres	hwater	·	PROPO	SED LIMITS		Order !	98-052	Order 9	96-050
			ECA acute multiplier	1	ECA chronic	LTA	Lowest	AMEL multiplier	AMEL	MDEL multiplier	MDEL	Lowest	Lowest		Мо	Daily	Мо	Daily
CTR#	DATE	Units	(p.7)	LTA acute		chronic	LTA	(n=4)	aq.iife	(n=4)	aglife -	AMEL	MDEL	Recommendation	Ave	Max	Ave	Max
	·							· · ·	1	1					1.			
109	9 4,4'-DDE	μġ/L		 	 	 	 	 	 	 -	 	 -	 	Interim Monitoring - No Limit	<u> </u>	 	<u> </u>	 ``
110	4,4'-DDD	μg/L			ļ		L					<u> </u>	<u>. </u>	Interim Monitoring - No Limit				
														h-1	· ·			
11	1 Dieldrin	μg/L	 	 					 	 . 	+			Interim Monitoring - No Limit	 	+	{ -	┼
112	alpha-Endosulfan	μg/L	·	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		Interim Monitoring - No Limit				
446	3 beta-Endosulfan		-			1000	1.		1		.]) ·	1	Interior Adamstracia y Band forts			·	
	beta-chiosullan	μg/L·		-	-				 		 	 -	 	Interim Monitoring - No Limit	 	+		+-
114	Endosulfan Sulfate	μg/L			1	<u> </u>	· ·		ļ	<u> </u>	ļ ··	-		Interim Monitoring - No Limit			<u> </u>	
		,	ļ							1:]].	1 :	Deleted limit from Order No. 96-	1		1	1
	4					1 .			· ·		1			050 because no RPA. New	1	1		-
											1	1		monitoring data (new information)			Ì	
)	1		}	1			1.		indicated pollutant is not present in the effluent or receiving water.	0.0023	3 0.18	ļ	
115	5 Endrin	μg/L					<u></u>			,				Require interim monitoring.		stayed		0.5
116	Endrin Aldehyde	μg/L					٠.					_	_	Interim Monitoring - No Limit	1			
						 	· · · ·	<u> </u>	1			 	 		 	+		
117	7 Heptachlor	μg/L	<u> </u>	<u> </u>	ļ. ·	ļ	ļ	 	 	 		ļ -	 -	Interim Monitoring - No Limit	ļ	—	ļ	
118	Heptachlor Epoxide	μg/L				,]				_	Interim Monitoring - No Limit		1		
	Polychlorinated biphenyls										1				1	T .		
	(PCBs)	μg/L			-	 	 		-	+	+			Interim Monitoring - No Limit	 	+	 	-
119	Aroclor 1016	μg/L			<u> </u>									Interim Monitoring - No Limit			<u> </u>	
120	Aroclor 1221	μg/L			İ	1		14.7				ļ	_	Interim Monitoring - No Limit	1			
120	Arocioi 1221	µg/L						<u> </u>	·	<u> </u>	 			Interim Montoning - 140 Little	├ ∸	+	 	
121	1 Aroclor 1232	μg/L	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>]	·	<u> </u>		<u> </u>	Interim Monitoring - No Limit	 	<u> </u>	<u> </u>	<u> </u>
. 122	2 Aroclor 1242	μg/L ·									1	<u> </u>		Interim Monitoring - No Limit	Ì		ļ	
124	AIOGOI,1242	µg/L	 							 	+	<u> </u>		THE SHALL MOTHER THE EATH	 	+	 	+
123	Aroclor 1248	μg/L		<u> </u>					ļ	<u> </u>	1		<u> -</u>	Interim Monitoring - No Limit	<u> </u>		1	
124	Aroclor 1254										1	_	_	Interim Monitoring - No Limit	1		1	
124	AIUCIUI 1204	μg/L	 		-		 	<u> </u>	<u> </u>	 	1	<u> </u>	-		\vdash	+	 	
125	Aroclor 1260	μg/L	<u> </u>		ļ:	 	<u> </u>	ļ	ļ					Interim Monitoring - No Limit	<u> </u>	 	<u> </u>	
		ļ ·						, .						· ·	1	.	1	<u> </u>
1											-							1
	Toxaphene NOTE	μg/L			1		_							Interim Monitoring - No Limit				

	1	1	1	1		CTR C	RITERIA											HUMAN HE	ALTH CALC	ULATIONS
		İ	1 .	[- {			•		•	REAS	ONABLE P	OTENTI	AL ANALY	'SIS (RPA)		•		
		1	ŀ	ł	Free	shwater	. Human	Health	Basin Plan										Organisns C	Only [.]
				1							1 .	Tier 1 -			Tier 2 -	1	Tier 3 -	AMELhh =	MDEL/	
			1		C acute =		Not applicable		Title 22	٠.	MEC >=	Need				other	need	ECA = Chh	AMEL	
CTR#	DATE	Units	CV	MEC .	CMC tot .	CCC tot	C hh W&O	C hh O	GWR	Lowest C	Lowest C	limit?	В	in Effl.	limit?	info. ?	limit?	0	multiplier	MDEL hh
	These metals are hardness								1			1 1			1.					
	dependent. CTR criteria was			1.				l		1		1 1	•		l .					
	calculated using an average	.	1	1:					1	Į.		1 1					İ			1
İ	receiving water hardness of	- 1	1			1	•		i			1 1								
	224 mg/L at station R2.	· ·	1	1		1 .		.	1				•	.						1 .
	Individual hardness values		1		ľ		1					1 .					1	1 .		1
١.	were capped at 400 mg/L,		1		·		1		ŀ		İ			١.			1		}	1
	pursuant to CTR.		-			· 	 	 	 		· · · · · · · · · · · ·			<u> </u>	-		↓		<u> </u>	
	These metals are hardness	- 1				1	1					1 1		ļ ·	İ		1] .	1.	
	dependent. CTR criteria was	•		·		1	1		i		l ·	1 1		ļ						
ŀ	calculated using the hardness		1		. F	1						1. [1				
l '	of 229 mg/L according to the		1	Ì	,	1 .									Ι΄		l .			1
ŀ	TMDL staff report, since RPA		ł				i	1	1	,		1.		'	l .					1
	was Tier 3, triggered by the	`	1 .	1			1	·.	1		ļ. ,				1	1	1			
	TMDL existance,		1	1 .				1			1.						1	1 .		1

<u> </u>	<u> </u>	1	I	AQUATIC L	IFE CALCUL	ATIONS		AQUA	TIC LIFE	CALCULATIO	ONS	Ι .		<u> </u>		Pre	evious P	ermit Lir	mits
					reshwater				Fres	hwater		PROPOS	SED LIMITS			Order 9	98-052	Order 9	36-050
			ECA acute multiplier		ECA chronic	LTA	Lowest	AMEL multiplier	AMEL	MDEL multiplier	MDEL	Lowest	Lowest			Мо	Daily	Мо	Daily
CTR#	DATE	Units	(p.7)	LTA acute	multiplier	chronic	LTA	(n=4)	aq.life	(n=4)	aqlife	AMEL	MDEL	Recommendation		Ave 1	Max	Ave .	Max
	These metals are hardness dependent. CTR criteria was calculated using an average receiving water hardness of 224 mg/L at station R2. Individual hardness values were capped at 400 mg/L, pursuant to CTR.																		
••	These metals are hardness dependent. CTR criteria was calculated using the hardness of 229 mg/L according to the TMDL staff report, since RPA was Tier 3, triggered by the TMDL existance,.														-				

Table R2

City of Burbank - Burbank Water Reclamation Plant REASONABLE POTENTIAL ANALYSIS using

Technical Support Document (TSD) Methodology

CONSTITUENT	Units	Number of Samples	Maximum Observed Effluent Concentration	CV	Multiplier	Projected Maximum Effluent Concentration (99/99)	Dilution Ratio	Projected Maximum Receiving Water Concentration	Water Quality Objective	HP-Human health protection AP-Aquatic life protection	REASONABLE POTENTIAL
Chronic Toxicity Survival	TUc	31	5.56	0.7	2.18	12.14	0	12.14	1	AP	YES
Nitrate N + Nitrite N	mg/L	33	6	0.3	1.42	8.54	0	8.54	7.2	AP	YES
Aluminum	μg/L	10	96	0.4	2.15	206.80	0	206.80	1000	НН	NO
Arsenic	μg/L	13	8	0.6	2.71	21.67	0	21.67	10	НН	YES
Barium	μg/L	10	40	0.2	1.48	59.35	0	59.35	1000	НН	NO
Fluoride	mg/L	31	0.5	0.2	1.28	0.64	0	0.64	2	HH	NO
Total trihalomethanes	μg/L	12	228	0.2	1.44	329.22	0	329.22	80	HH	YES
Iron	μg/L	31	230	0.6	1.99	456.75	0	456.75	300	НН	YES
Manganese	μg/L	31	15	0.5	1.79	26.91	0	26.91	50	HH	NO
Methoxychlor	μg/L	10	0.005	0.6	3.02	0.02	0	0.02	- 30	НН	NO
MTBE	μg/L	11	0.5	0.6	2.90	1.45	0	1.45	13	нн	NO
2,4-D	μg/L	10	0.5	0.6	3.02	1.51	0	1.51	70	НН	NO
2,4,5-TP (Silvex)	μg/L	10	0.005	0.6	3.02	0.02	0	0.02	50	HH	NO

FS -Table R2

Table R3 City of Burbank - Burbank WRP

Total Recoverable Metals Criteria (CA0055531, Cl#4424)

,											* **		
		1		Fresh	water					Fresh	nwater	•	
1 . 1	/L)			CMC o	r Acute		. *			· CCC or	Chronic		
	ω.	CMC = WE	R x Conversi	on Factor x (exp {mA [ln(H	lardness)] +	bA})	CCC = WEI	R x Conversion	on Factor x (exp (mC [ln(h	ardness)]+ b	C})
Pollutant	HARDNESS (WER	Conversion		bA	Total Recoverable Limit (μg/L)	Dissolved Fraction Limit (µg/L)	WER	Conversio n Factor	mC	ЬС	Total Recoverable Limit (µg/L)	Dissolved Fraction Limit (µg/L)
						•							
Cadmium	229		0.909336	1.128	-3.6867	11.50	10.46	1	0.874336	0.7852	-2.715	4.72	4.13
Copper	224		0.96	0.9422	-1.7	29.93	28.73	. 1	0.96	0.8545	-1.702	18.58	17.84
Chromium													
ļui —	224	·	0.316	0.819	3.688	3361.48	1062.23	1	0.86	0.819	1.561	400.67	344.58
Lead	229	-	0.670271	1.273	-1.46	234.42	157.13	1	0.670271	1.273	-4.705	9.14	6.12
Nickel	224		0.998	0.846	2.255	928.20	926.35	1	0.997	0.846	0.0584	103.20	102.89
Silver	224		0.85	1.72	-6.52	16.25	13.81	1	none	none	none	#VALUE!	#VALUE!
Zinc	. 224	-	0.978	0.8473	0.884	237.29	232	1	0.986	. 0.8473	0.884	237	233.97

ATTACHMENT T

State of California CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION

MONITORING AND REPORTING PROGRAM NO. CI-4424 FOR CITY OF BURBANK (Burbank Water Reclamation Plant) (NPDES NO. CA0055531)

The City of Burbank (Discharger) shall implement this monitoring and reporting program the first of the month following the month of the effective date of this Order.

I. SUBMITTAL OF MONITORING REPORTS

- 1. All monthly monitoring reports must be received by the fifteenth day of the second month following each monthly sampling period.
- 2. By April 15th of each year, the Discharger shall submit an annual summary report containing a discussion of the previous year's effluent and receiving water monitoring data, as well as graphical and tabular summaries of the data. The first annual report under this Program shall be received at the Regional Board by April 15, 2008, and will cover the monitoring period of calendar year 2007. The Regional Board may request electronic submittal of data at any time.
- 3. Each monitoring report shall contain a separate section titled "Summary of Non-Compliance" which discusses the compliance record and the corrective actions taken or planned that may be needed to bring the discharge into full compliance with waste discharge requirements. This section shall clearly list all non-compliance with discharge requirements, as well as all excursions of effluent limitations.
- 4. Each annual monitoring report shall contain a separate section titled "Reasonable Potential Analysis" which discusses whether or not reasonable potential was triggered for pollutants which do not have a final effluent limitation in the NPDES permit. This section shall contain the following statement: The analytical results for this sampling period did/ did not trigger reasonable potential." If reasonable potential was triggered, then the following information should also be provided:
 - a. A list of the pollutant(s) that triggered reasonable potential;
 - b. The Basin Plan or CTR criteria that was exceeded for each given pollutant;
 - c. The concentration of the pollutant(s);
 - d. The test method used to analyze the sample; and
 - e. The date and time of sample collection.
- 5. All monitoring and annual summary reports must be addressed to the Regional Board, Attention: <u>Information Technology Unit</u>. Reference the reports to Compliance File No. CI-4424 to facilitate routing to the appropriate staff and file.

6. Database Management System: The Regional Board and the State Water Resources Control Board (State Board) are developing a database compliance monitoring management system that may require the Discharger to submit the monitoring and annual summary reports electronically when it becomes fully operational.

II. MONITORING REQUIREMENTS

- 1. All samples shall be representative of the waste discharge under conditions of peak load. Quarterly effluent analyses shall be performed during the months of February, May, August, and November. Semiannual analyses shall be performed during the months of February and August. Annual analyses shall be performed during the month of August. Should there be instances when monitoring could not be done during these specified months, the Discharger must notify the Regional Board, state the reason why monitoring could not be conducted, and obtain approval from the Executive Officer for an alternate schedule. Results of quarterly, semiannual, and annual analyses shall be reported in the monthly monitoring report following the analysis.
- 2. Pollutants shall be analyzed using the analytical methods described in 40 CFR, Part 136; or where no methods are specified for a given pollutant, by methods approved by the Regional Board or State Board. The laboratory conducting analyses shall be certified by the California Department of Health Services Environmental Laboratory Accreditation Program (ELAP) or approved by the Regional Board for that particular parameter. A copy of the laboratory certification shall be submitted with the annual summary report.
- 3. Water/wastewater samples must be analyzed within allowable holding time limits as specified in 40 CFR, Part 136.3. All QA/QC analyses must be run on the same dates that samples are actually analyzed. The Discharger shall retain the QA/QC documentation in its files and make available for inspection and/or submit them when requested by the Regional Board. Proper chain of custody procedures must be followed and a copy of that documentation shall be submitted with the monthly report.
- 4. For all bacteriological analyses, sample dilutions should be performed so the range of values extends from 2 to 16,000. The detection methods used for each analysis shall be reported with the results of the analyses.

Detection methods used for coliforms (total and fecal) shall be those presented in Table 1A of 40 CFR, Part 136 (revised May 14, 1999), unless alternate methods have been approved in advance by the United State Environmental Protection Agency (USEPA) pursuant to 40 CFR Part 136.

Detection methods used for enterococcus shall be those presented in the USEPA publication EPA 600/4-85/076, *Test Methods for Escherichia coli* and Enterococci in Water By Membrane Filter Procedure or any improved method determined by the Regional Board to be appropriate.

III. REPORTING REQUIREMENTS

- 1. The monitoring report shall specify the USEPA analytical method used, the Method Detection Limit (MDL), the minimum level (ML) and the reported Minimum Level (RML) for each pollutant. The MLs are those published by the State Board in the *Policy for the Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California, (revised May 31, 2005)*, Appendix 4. The ML represents the lowest quantifiable concentration in a sample based on the proper application of all method-based analytical procedures and the absence of any matrix interference. When all specific analytical steps are followed and after appropriate application of method specific factors, the ML also represents the lowest standard in the calibration curve for that specific analytical technique. When there is deviation from the method analytical procedures, such as dilution or concentration of samples, other factors may be applied to the ML depending on the sample preparation. The resulting value is the reported minimum level.
- 2. The Discharger shall select the analytical method that provides a ML lower than the permit limit established for a given parameter, unless the Discharger can demonstrate that a particular ML is not attainable, in accordance with procedures set forth in 40 CFR, Part 136, and obtains approval for a higher ML from the Executive Officer, as provided for in III.E. of this section. If the effluent limitation is lower than all the MLs in Appendix 4, SIP, the Discharge must select the method with the lowest ML for compliance purposes. The Discharger shall include in the Annual Summary Report a list of the analytical methods employed for each test.
- 3. The Discharger shall instruct its laboratories to establish calibration standards so that the ML (or its equivalent if there is differential treatment of samples relative to calibration standards) is the lowest calibration standard. At no time is the Discharger to use analytical data derived from extrapolation beyond the lowest point of the calibration curve. In accordance with section 5, below, the Discharger's laboratory may employ a calibration standard lower than the ML in Appendix 4 of the SIP.
- 4. For the purpose of reporting compliance with numerical effluent limitations and receiving water limitations, analytical data shall be reported using the following reporting protocols:
 - A. Sample results greater than or equal to the RML must be reported "as measured" by the laboratory (i.e., the measured chemical concentration in the sample); or
 - B. Sample results less than the RML, but greater than or equal to the laboratory's MDL, must be reported as "Detected, but Not Quantified", or DNQ. The laboratory must write the estimated chemical concentration of the sample next to DNQ as well as the words "Estimated Concentration" (may be shortened to Est. Conc.); or
 - C. Sample results less than the laboratory's MDL must be reported as "Not-Detected", or ND.

- 5. In accordance with Section 2.4.3 of the SIP, the Regional Board Executive Officer, in consultation with the State Board's Quality Assurance Program Manager, may establish an ML that is not contained in Appendix 4 of the SIP to be included in the discharger's permit in any of the following situations:
 - A. When the pollutant under consideration is not included in Appendix 4, SIP;
 - B. When the discharger and the Regional Board agree to include in the permit a test method that is more sensitive than those specified in 40 CFR, Part 136 (revised as of May 14, 1999);
 - C. When a discharger agrees to use an ML that is lower than those listed in Appendix 4:
 - D. When a discharger demonstrates that the calibration standard matrix is sufficiently different from that used to establish the ML in Appendix 4 and proposes an appropriate ML for the matrix; or,
 - E. When the discharger uses a method, which quantification practices are not consistent with the definition of the ML. Examples of such methods are USEPA-approved method 1613 for dioxins, and furans, method 1624 for volatile organic substances, and method 1625 for semi-volatile organic substances. In such cases, the discharger, the Regional Board, and the State Water Resources Control Board shall agree on a lowest quantifiable limit and that limit will substitute for the ML for reporting and compliance determination purposes.

If there is any conflict between foregoing provisions and the State Implementation Policy (SIP), the provisions stated in the SIP (Section 2.4) shall prevail.

- 6. If the Discharger samples and performs analyses (other than for process/operational control, startup, research, or equipment testing) on any influent, effluent, or receiving water constituent more frequently than required by this Program using approved analytical methods, the results of those analyses shall be included in the report. These results shall be reflected in the calculation of the average used in demonstrating compliance with average effluent, receiving water, etc., limitations.
- 7. The Discharger shall develop and maintain a record of all spills, overflows, or bypasses of raw or partially treated sewage from its collection system or treatment plant, according to the requirements in the WDR section of this Order. This record shall be made available to the Regional Board upon request and a spill summary shall be included in the annual summary report.
- 8. The Discharger shall inform the Regional Board well in advance of any construction activity that could potentially affect compliance with applicable requirements.

IV. MONITORING REQUIREMENTS

- 1. Pursuant to the Code of Federal Regulations [40 CFR, Section 122.41(j) and Section 122.48(b)], the monitoring program for a discharger receiving an NPDES permit must be designed to determine compliance with NPDES permit terms and conditions, and demonstrate that State water quality standards are met.
- Since compliance monitoring focuses on the effects of a point source discharge, it is not designed to assess impacts from other sources of pollution (e.g., non-point source runoff, aerial fallout) or to evaluate the current status of important ecological resources on a regional basis.

A Watershed-wide Monitoring Program will be developed within one years from the effective date of this Order and permit for the Los Angeles River Watershed. The goals of the watershed-wide monitoring program will include evaluating or assessing: compliance with receiving water objectives, trends in surface water quality, impacts to beneficial uses, the health of the biological community, data needs for modeling contaminants of concern, and attaining the goals of the TMDLs under implementation in the Los Angeles River. The Discharger shall participate in the development and implementation of the watershed-wide monitoring program, and submit a copy of the draft Watershed-wide Monitoring Program by December 31, 2007, to the Regional Board.

- 3. Changes to the compliance monitoring program may be required to fulfill the goals of the watershed-wide monitoring program, while retaining the compliance monitoring component required to evaluate compliance with the NPDES permit. Revisions to the Discharger's program will be made under the direction of the Regional Board, as necessary, to accomplish the goal, and may include a reduction or increase in the number of parameters to be monitored, the frequency of monitoring, and/or the number of samples collected.
- 4. Until such time when a watershed-wide monitoring program is developed, the City shall implement the monitoring program in the following sections.

V. INFLUENT MONITORING REQUIREMENTS

(Footnotes are on pages T-26 and T-28)

- 1. Influent monitoring is required:
 - A. To determine compliance with the permit conditions for BOD₅ 20°C and suspended solids removal rates;
 - B. To assess treatment plant performance;
 - C. To assess the effectiveness of the Pretreatment Program; and,

- D. As a requirement of the Pollution Minimization Program.
- 2. Sampling stations shall be established at each point of inflow to the sewage treatment plant and shall be located upstream of any in-plant return flows and/or where representative samples of the influent can be obtained. The date and time of sampling shall be reported with the analytical results.
- 3. Samples for influent BOD₅20°C and suspended solids analysis shall be obtained on the same day that the effluent BOD₅20°C and suspended solids samples are obtained to demonstrate percent removal. Similarly, sampling for other constituents shall also be coordinated with effluent sampling.
- 4. The following shall constitute the influent monitoring program:

		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
				Minimum
CTR#	Constituents	Units	Type of Sample	Frequency of
<u> </u>			<u> </u>	Analysis
<u>.</u>	Flow	mgd	recorder	continuous [1]
	рН	pH units	grab	weekly
	Suspended solids	mg/L	24-hour composite	weekly
	BOD₅ 20°C	mg/L	24-hour composite	weekly
	MBAS	mg/L	24-hour composite	weekly
4	Cadmium	μg/L	24-hour composite	quarterly
5	Total Chromium	μg/L	grab	quarterly
5a	Chromium III	μg/L	grab	quarterly
5b_	Chromium (VI)	μg/L	grab	quarterly
6	Copper	μg/L	24-hour composite	quarterly
7	Lead	μg/L	24-hour composite	quarterly
8	Mercury	μg/L	24-hour composite	quarterly
10	Selenium	μg/L	24-hour composite	quarterly
13	Zinc	μg/L	24-hour composite	quarterly
14	Cyanide	μg/L	grab	quarterly
16	2,3,7,8-TCDD	μg/L	grab	semiannually
23	Dibromochloromethane	μg/L	grab	quarterly
27	Dichlorobromomethane	μg/L	grab	quarterly
68	Bis(2-ethylhexyl)phthalate	μg/L	grab	quarterly
105	Lindane (gamma-BHC)	μg/L	24-hour composite	quarterly
	Total Trihalomethanes [2]	μg/L	grab	quarterly
	Iron	μg/L	24-hour composite	quarterly
	Remaining EPA priority	μg/L	24-hour composite/	semiannually
	pollutants excluding asbestos		grab for VOCs	

VI. EFFLUENT MONITORING REQUIREMENTS

(Footnotes are on pages T-26 and T-28)

- 1. Effluent monitoring is required to:
 - A. Determine compliance with NPDES permit conditions;
 - B. Identify operational problems and aid in improving plant performance;
 - C. Provide information on wastewater characteristics and flows for use in interpreting water quality and biological data; and,
 - D. Determine Reasonable Potential Analysis for toxic pollutants.
- 2. An effluent sampling station shall be located downstream of any in-plant return flows where representative samples of the effluent can be obtained. Any changes in sampling station locations must be approved by the Executive Officer.
- 3. The following shall constitute the effluent monitoring program for Discharge Serial No. 002:

CTR#	Constituents	Units	Type of Sample	Minimum Frequency of Analysis
	Total waste flow	mgd	recorder	continuous [1]
	Turbidity ⁽¹⁾	NTU	recorder	continuous [1]
	Total residual chlorine	mg/L	recorder	Continuous [1, **, ***]
	Total residual chlorine	mg/L	grab *	daily ****
	Total coliform ^[3]	MPN/100 ml	grab	daily
	Fecal coliform ^[3]	MPN/100 ml	grab	daily
	E. coli	MPN/100 ml	grab	weekly
	Temperature [4]	℉	grab/ recorder	daily/ continuous
	pH	pH units	grab	daily
	Settleable solids	ml/L	grab	daily
	Suspended solids	mg/L	24-hour composite	daily
-	BOD ₅ 20°C ^[5]	mg/L	24-hour composite	weekly
	Oil and grease	mg/L	grab	monthly
	Dissolved oxygen	mg/L	grab	monthly
·.	Total dissolved solids	mg/L	24-hour composite	monthly
	Chloride	mg/L	24-hour composite	monthly
	Sulfates	mg/L	24-hour composite	monthly
	Boron	mg/L	24-hour composite	monthly
	Fluoride	mg/L	24-hour composite	quarterly
	Ammonia nitrogen	mg/L	24-hour composite	monthly
	Nitrate nitrogen	mg/L	24-hour composite	monthly
	Nitrite nitrogen	mg/L	24-hour composite	monthly

City of Burbank - Burbank Water Reclamation Plant Monitoring and Reporting Program No. CI-4424

CTR#	Constituents	Units	Type of Sample	Minimum Frequency of Analysis
	Organic nitrogen	mg/L	24-hour composite	monthly
	Total nitrogen	mg/L	24-hour composite	monthly
	Surfactants (MBAS) [6]	mg/L	24-hour composite	monthly
	Surfactants (CTAS) [6]	mg/L	24-hour composite	monthly
	Total hardness (CaCO ₃)	mg/L	24-hour composite	monthly
1	Chronic toxicity ^[7]	TUc	24-hour composite	monthly
	Acute toxicity ^[8]	% Survival	grab	quarterly
	Perchlorate [9]	μg/L	grab	semiannually
	1,4-Dioxane ^[10]	μg/L	grab	semiannually
	1,2,3-Trichloropropane [11]	μg/L	grab	semiannually
	MTBE [12]	μg/L	grab	semiannually
	Barium	μg/L	24-hour composite	quarterly
	Iron	μg/L	24-hour composite	monthly
- 1	Manganese	μg/L	24-hour composite	monthly
	Total Trihalomethanes [2]	μg/L	24-hour composite	monthly
1	Antimony	μg/L	24-hour composite	quarterly
2	Arsenic	μg/L	24-hour composite	monthly
3	Beryllium	μg/L	24-hour composite	semiannually
4	Cadmium	μg/L	24-hour composite	monthly
5a	Chromium III	μg/L	grab	monthly
5b	Chromium VI	μg/L	grab	monthly
6	Copper	μg/L	24-hour composite	monthly
7	Lead	μg/L	24-hour composite	monthly
8	Mercury	μg/L	24-hour composite	monthly
9	Nickel	μg/L	24-hour composite	quarterly
10	Selenium	μg/L	24-hour composite	monthly
11	Silver	μg/L	24-hour composite	quarterly
12	Thallium	μg/L	24-hour composite	semiannually
13	Zinc	μg/L	24-hour composite	monthly
14	Cyanide	μg/L	grab	monthly
16	2,3,7,8-TCDD (Dioxin) [13]	ng/L	24-hour comp.	semiannually
18	Acrylonitrile	μg/L	24-hour comp.	semiannually
20	Bromoform	μg/L	grab	monthly
21	Carbon tetrachloride	μg/L	24-hour comp.	quarterly
23	Dibromochloromethane	μg/L	grab	monthly
26	Chloroform	μg/L	grab	monthly
27	Bromodichloromethane	μg/L	grab	monthly
68	Bis(2-ethylhexyl)phthalate	μg/L	24-hour comp.	monthly
	= (= 0 ; 1, 10 / j / p / 1 1 calculo	1 49/L		1
105	Gamma-BHC (Lindane)	μg/L	24-hour composite	monthly

CTR#	Constituents	Units	Type of Sample	Minimum Frequency of Analysis
	2,4,5-TP (Silvex)	μg/L	24-hour composite	semiannually
	Diazinon [14]	μg/L	24-hour composite	semiannually
	Pesticide [15]	μg/L	24-hour composite	semiannually
	Remaining EPA priority pollutants excluding asbestos	μg/L	24-hour composite/ grab for VOCs	semiannually
	Radioactivity [16]	PCi/L	24-hour composite	semiannually

4. Toxicity Testing - Applicable for both Effluent and Receiving Waters

A. Acute Toxicity Testing

- a. The Discharger shall conduct acute toxicity tests on 100 % effluent and receiving water grab samples by methods specified in 40 CFR Part 136, which cites USEPA's *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*, October, 2002 (EPA-821-R-02-012) or a more recent edition to ensure compliance.
- b. The fathead minnow, *Pimephales promelas*, shall be used as the test species for fresh water discharges and the topsmelt, *Atherinops affinis*, shall be used as the test species for brackish discharges. However, if the salinity of the receiving water is between 1 to 32 parts per thousand (ppt), then Discharger may have the option of using the inland silverslide, *Menidia beryllina*, instead of the topsmelt. The method for topsmelt is found in USEPA's *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*, October, 2002 (EPA-821-R-02-012).
- c. In lieu of conducting the standard acute toxicity testing with the fathead minnow, the Discharger may elect to report the results or endpoint from the first 48 hours of the chronic toxicity test as the results of the acute toxicity test, but only if the Discharger uses USEPA's August 1993 protocol (EPA/600/4-90/027F) to conduct the chronic toxicity test.
- d. If either of the effluent or receiving water toxicity requirements in Section I.A.11.b.i. or I.A.11.b.ii. and Section I.B.18., respectively, of this Order is not met, the Discharger shall conduct six additional tests over a six-week period. The Discharger shall ensure that results of a failing acute toxicity test are received by the Discharger within 24 hours of completion of the test and the additional tests shall begin within 3 business days of receipt of the result. If the additional tests indicate compliance with acute toxicity limitation, the Discharger may resume regular testing. However, if the results of any two of the six accelerated tests are less than 90% survival, then the Discharger shall begin a Toxicity Identification Evaluation (TIE). The TIE shall include all reasonable steps to identify the sources of toxicity.

Once the sources are identified, the Discharger shall take all reasonable steps to reduce toxicity to meet the objective.

e. If the initial test and any of the additional six acute toxicity bioassay tests results are less than 70% survival, the Discharger shall immediately implement Initial Investigation Toxicity Reduction Evaluation (TRE) Workplan. Once the sources are identified the Discharger shall take all reasonable steps to reduce toxicity to meet the requirements.

B. Chronic Toxicity Testing

- a. The Discharger shall conduct critical life stage chronic toxicity tests on 24-hour composite 100% effluent samples and receiving water samples in accordance with EPA's Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, October 2002 (EPA-821-R-02-013) or EPA's Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms, October 2002 (EPA-821-R-02-014), or current version.
- b. Effluent samples shall be collected after all treatment processes, including the Burbank WRP's dechlorination process, and before discharge to the receiving water. After a sample is collected it should not be further dechlorinated prior to submittal to the laboratory. Receiving water samples shall be collected in accordance with the conditions specified in this MRP (CI-4424). Receiving water samples shall be collected at mid-depth, when possible.
- c. Test Species, Methods and Units:
 - i. Screening and Monitoring The Discharger shall conduct short-term tests with the cladoceran, water flea (*Ceriodaphnia dubia* survival and reproduction test), the fathead minnow (*Pimephales promelas* larval survival and growth test), and the green alga (*Selenastrum capricornutum* growth test) as an initial screening process for a minimum of three, but not to exceed, five suites of tests to account for potential variability of the effluent and receiving water. After this screening period, monitoring shall be conducted using the most sensitive species. This is applicable to new dischargers.
 - ii. Re-screening Re-screening is required every 24 months, but may be performed annually at the discretion of the City. The Discharger shall re-screen with the three species listed above and continue to monitor with the most sensitive species. If the first suite of re-screening tests demonstrates that the same species is the most sensitive then the rescreening does not need to include more than one suite of tests. If a different species is the most sensitive or if there is ambiguity, then the

City of Burbank

Burbank Water Reclamation Plant
 Monitoring and Reporting Program No. CI-4424

Discharger shall proceed with suites of screening tests for a minimum of three, but not to exceed five suites.

iii. <u>Toxicity Units</u> - The presence of chronic toxicity shall be estimated as specified in EPA's *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms*, October 2002 (EPA-821-R-02-013), expressed as:

$$TU_c = \frac{100}{NOEC}$$

The No Observable Effect Concentration (NOEC) is expressed as the maximum percent effluent concentration that causes no observable effect on test organisms, as determined by the results of a critical life stage toxicity test.

d. Accelerated Monitoring

If toxicity is detected as defined in Order No. R4-2006-0085, Section I.A.12.c. or Section I.B.19.c., then the Discharger shall conduct six additional tests, approximately every 7 days, over a six-week period. The samples shall be collected and the tests initiated no less than 7 days apart. The Discharger shall ensure that they receive results of a failing chronic toxicity test within 24 hours of the completion of the test and the additional tests shall begin within 3 business days of the receipt of the result.

- i. If any three out of the initial test and the six additional tests results exceed 1.0 TU_c the Discharger shall immediately implement the <u>Initial</u> Investigation of the TRE.
- ii. If implementation of the initial investigation TRE Workplan indicates the source of toxicity (e.g., a temporary plant upset, etc.), then the Discharger shall return to the normal sampling frequency required in Sections VI.3 and VII.2. of this MRP.
- iii. If all of the six additional tests required above do not exceed 1 TUc, then the Discharger may return to the normal sampling frequency required in Sections VI.3. and VII.2. of this MRP.
- iv. If a TRE/TIE is initiated prior to completion of the accelerated testing schedule required, then the accelerated testing schedule may be terminated, or used as necessary in performing the TRE/TIE, as determined by the Executive Officer.

C. Quality Assurance

- a. Concurrent testing with a reference toxicant shall be conducted. Reference toxicant tests shall be conducted using the same test conditions as the effluent toxicity tests (e.g., same test duration, etc).
- b. If either the reference toxicant test or effluent test or receiving water does not meet all test acceptability criteria (TAC) as specified in the test methods manuals (EPA-821-R-02-013 and EPA-821-R-02-014), then the Discharger must re-sample and re-test within 14 days.
- c. Control and dilution water for effluent should be receiving water or laboratory water, as appropriate, as described in the manuals. If the dilution water used is different from the culture water, a second control using culture water shall be used.

D. Steps in TRE and TIE

- a. Following a TRE trigger, the Discharger shall initiate a TRE in accordance with the facility's initial investigation TRE Workplan. At a minimum, the Discharger shall use EPA manual EPA/833B-99/002 (municipal) as guidance, or current version. The Discharger shall expeditiously develop a more detailed TRE Workplan for submittal to the Executive Officer within 15 days of the trigger, that will include but not limited to:
 - i. Further actions to investigate and identify the cause of toxicity;
 - ii. Actions the Discharger will take to mitigate the impact of the discharge and prevent the recurrence of toxicity;
 - iii. Standards the Discharger will apply to consider the TRE complete and for the return to normal sampling frequency; and,
 - iv. A schedule for these actions.
- b. The following is a stepwise approach in conducting the TRE:
 - i. Step 1 includes basic data collection. Data collected as part of the accelerated monitoring required may be used to conduct the TRE.
 - ii. Step 2 evaluates optimization of the treatment system operation, facility housekeeping, and the selection and use of in-plant process chemicals.
 - iii. If Steps 1 and 2 are unsuccessful, Step 3 implements a TIE employing all reasonable efforts, and using currently available TIE

methodologies. The objective of the TIE is to identify the substance or combination of substances causing the observed toxicity.

- iv. Assuming successful identification or characterization of the toxicant(s), Step 4 evaluates final effluent treatment options;
- v. Step 5 evaluates within plant treatment options; and,
- vi. Step 6 consists of confirmation once a toxicity control method has been implemented.

Many recommended TRE elements parallel source control, pollution prevention, and storm water control program best management practices (BMPs). To prevent duplication of efforts, evidence of implementation of these control measures may be sufficient to comply with TRE requirements. By requiring the first steps of a TRE to be accelerated testing, a TRE may be ended in its early stages. All reasonable steps shall be taken to reduce toxicity to the required level. The TRE may be ended at any stage if monitoring finds there is no longer toxicity (or six consecutive chronic toxicity results less than or equal to 1 TUc (monthly median).

- c. The Discharger shall initiate a TIE as part of the TRE process to identify the cause(s) of toxicity. The Discharger shall use the EPA acute and chronic manuals, EPA/600/6-91/005F (Phase I) /EPA/600/R-96-054 (for marine), EPA/600/R-92/080 (Phase II), and EPA-600/R-92/081 (Phase III) as guidance, or current version.
- d. If a TRE/TIE is initiated prior to completion of the accelerated testing schedule required, then the accelerated testing schedule may be terminated, or used as necessary in performing the TRE/TIE, as determined by the Executive Officer.
- e. Toxicity tests conducted as part of a TRE/TIE may also be used for compliance, if appropriate.
- f. The Board recognizes that toxicity may be episodic and identification of causes of and reduction of sources of toxicity may not be successful in all cases. Consideration of enforcement action by the Board will be based in part on the Discharger's actions and efforts to identify and control or reduce sources of consistent toxicity.
 - If all the results of the six additional tests are in compliance with the chronic toxicity 1 TUc trigger, the Discharger may resume regular monthly testing.
 - ii. If the results of any of the six accelerated tests exceeds 1 TUc, the Discharger shall continue to monitor weekly until six consecutive weekly

tests are in compliance. At that time, the Discharger may resume regular monthly testing.

- iii. If the results of two of the six tests, or any two tests in a six-week period, exceed 1 TUc, the Discharger shall initiate a TRE.
- iv. If implementation of the initial investigation TRE workplan (see item E, below) indicates the source of toxicity (e.g., a temporary plant upset, etc.), then the Discharger shall return to the regular testing frequency.

E. Preparation of an Initial Investigation TRE Workplan

Within 90 days of the effective date of this Order and permit, the Discharger shall submit a copy of its initial investigation TRE workplan to the Executive Officer of the Regional Board for approval. The Discharger shall use the USEPA manual, *Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants*, EPA/833B-99/002, as guidance, or current version. This workplan shall describe the steps the Discharger intends to follow if the toxicity exceeds 1 TUc, and should include, at a minimum, the following:

- Description of the investigation and evaluation techniques that will be used to identify potential causes and sources of toxicity, effluent variability, and treatment system efficiency;
- b. Description of the facility's methods of maximizing in-house treatment efficiency and good housekeeping practices, and a list of all chemicals used in operation of the facility; and,
- c. If a TIE is necessary, an indication of the person who will conduct the TIE (i.e., an in-house expert or an outside contractor), or current version.

F. Ammonia Removal

- a. Except with prior approval from the Executive Officer of the Regional Board ammonia shall not be removed from the bioassay samples. The Discharger must demonstrate the effluent toxicity is caused by ammonia because of increasing test pH when conducting the toxicity test. It is important to distinguish the potential toxic effects of ammonia from other pH sensitive chemicals, such as certain heavy metals, sulfide, and cyanide. The following may be steps to demonstrate the toxicity is caused by ammonia and not other toxicants before the Executive Officer of the Regional Board would allow for control of pH in the test.
 - There is consistent toxicity in the effluent/receiving water and the maximum pH in the toxicity test is in the range to cause toxicity due to increased pH.

- ii. Chronic ammonia concentrations in the effluent/receiving water are greater than 4 mg/L total ammonia. The level of detection for total ammonia generally need not be below 0.5-1.0 mg/L, since concentrations < 1.0 mg/L of total ammonia have not been found to be toxic to fathead minnows and Ceriodaphnia dubia (Acute ammonia LC₅₀ values of 3 mg/L and 1 mg/L for Ceriodaphnia dubia and fathead minnows, respectively, at pH 8.0). Then,
- iii. Conduct the graduated pH tests as specified in the toxicity identification evaluation methods. For example, mortality should be higher at pH 8 and lower at pH 6.
- iv. Treat the effluent with a zeolite column to remove ammonia. Mortality in the zeolite treated effluent should be lower than the non-zeolite treated effluent. Then add ammonia back to the zeolite-treated samples to confirm toxicity due to ammonia.
- b. After it has been demonstrated that toxicity is due to ammonia, pH may be controlled using appropriate procedures which do not significantly alter the nature of the effluent after submitting a written request to the Regional Board, and receiving written permission expressing approval from the Executive Officer of the Regional Board.

G. Reporting

- a. The Discharger shall submit a full report of the toxicity test results, including any accelerated testing conducted during the month as required by this permit. Test results shall be reported in Toxicity Units (TUc) for chronic toxicity, and in percent survival for acute toxicity, with the discharge monitoring reports (DMR) for the month in which the test is conducted.
- b. If an initial investigation indicates the source of toxicity and accelerated testing is unnecessary, pursuant to Section VI.4.D.f.iv of this MRP, then those results also shall be submitted with the DMR for the period in which the Investigation occurred.
 - i. The full report shall be submitted by the end of the month in which the DMR is submitted.
 - ii. The full report shall consist of (1) the results; (2) the dates of sample collection and initiation of each toxicity test; (3) the acute toxicity average limit or chronic toxicity limit; and (4) printout of the toxicity program (ToxCalc or CETIS) results.
 - iii. Test results for toxicity tests also shall be reported according to the appropriate manual chapter on Report Preparation and shall be

attached to the DMR. Routine reporting shall include, at a minimum, as applicable, for each test:

- sample date(s)
- test initiation date
- test species
- end point values for each dilution (e.g. number of young, growth rate, percent survival)
- NOEC value(s) in percent effluent
- TUc values $\left(TU_c = \frac{100}{NOEC}\right)$
- Mean percent mortality (+standard deviation) after 96 hours in 100% effluent (if applicable)
- NOEC and LOEC (Lowest Observable Effect Concentration) values for reference toxicant test(s)
- Available water quality measurements for each test (e.g., pH, D.O., temperature, conductivity, hardness, salinity, ammonia).
- iv. The Discharger shall provide a compliance summary, which includes a summary table of toxicity data from at least eleven of the most recent samples.
- v. The Discharger shall notify this Regional Board immediately of any toxicity exceedance and in writing 14 days after the receipt of the results of a monitoring limit or trigger. The notification will describe actions the Discharger has taken or will take to investigate and correct the cause(s) of toxicity. It may also include a status report on any actions required by the permit, with a schedule for actions not yet completed. If no actions have been taken, the reasons shall be given.
- 5. Tertiary Filter Treatment Bypasses
 - A. During any day that the filters are bypassed, THE CITY shall monitor the effluent for BOD, suspended solids, settleable solids, coliform, and oil and grease, on a daily basis, until it is demonstrated that the filter "bypass" has not caused an adverse impact on the receiving water.

City of Burbank

- Burbank Water Reclamation Plant
Monitoring and Reporting Program No. CI-4424

- B. The City shall maintain a chronological log of tertiary filter treatment process bypasses, to including the following:
 - a. Date and time of bypass start and end;
 - b. Total duration time; and,
 - c. Estimated total volume bypassed.
- C. The City shall notify Regional Board staff by telephone within 24 hours of the filter bypass event.
- D. The City shall submit a written report to the Regional Board, according to the corresponding monthly self-monitoring report schedule. The report shall include, at a minimum, the information from the chronological log. Results from the daily effluent monitoring, required by Section VI. 5.A. above, shall be submitted to the Regional Board in the Discharger's self-monitoring report as soon as the results become available.

VII. RECEIVING WATER MONITORING REQUIREMENTS FOR SURFACE WATERS (Footnotes are on pages T-26 and T-28)

 Receiving water stations shall be established at the locations shown in Figure 3 and as follows:

Station Number	<u>Description</u>		
R-1	Burbank Western Channel at its confluence with Lockheed Channel, about 300 feet above the Burbank WRP (upstream of Discharge Serial No. 002)		
R-2	Burbank Western Channel at Verdugo Wash (downstream of Discharge Serial No. 002)		
R-5	Burbank Western Wash, just upstream of its confluence with the Los Angeles River		

2. The following analyses, which constitute the receiving water monitoring program, shall be conducted on grab samples obtained at stations R-1, R-2, and R-3:

			Minimum Frequency of
CTR#	Constituent	Units	Analysis
	Total flow	cfs	monthly
	рН	pH units	monthly
	Temperature	°F	monthly

		· · · · · · · · · · · · · · · · · · ·	
OTP "			Minimum Frequency of
CTR#	Constituent	Units	Analysis
	Dissolved oxygen	mg/L	monthly
	Total residual chlorine	mg/L	weekly
	Total coliform	CFU/100 ml	monthly
	Fecal coliform	CFU/100 ml	monthly
	E.coli	MPN/100 ml	monthly
	Turbidity	NTU	monthly
<u> </u>	BOD ₅ 20°C	mg/L	monthly
	Total dissolved solids	mg/L	monthly
	Conductivity	μmhos/cm	monthly
	Chloride	mg/L	monthly
	Sulfates	mg/L	monthly
	Boron	mg/L	monthly
	Fluoride	mg/L	monthly
	Ammonia nitrogen	mg/L	weekly [17]
	Nitrate nitrogen	mg/L	weekly [17]
	Nitrite nitrogen	mg/L	weekly [17]
	Organic nitrogen	mg/L	weekly [17]
	Total nitrogen	mg/L	weekly [17]
	Total phosphorus	mg/L	monthly
	Orthophosphate-P	mg/L	monthly
	Algal biomass [18]	mg/L	monthly
	Surfactants (MBAS) [6]	mg/L	monthly
1.	Surfactants (CTAS) [6]	mg/L	monthly
	Chemical oxygen demand (COD)	mg/L	monthly
	Oil and grease	mg/L	monthly
	Settleable solids	mg/L	monthly
	Suspended solids	mg/L	monthly
	Total hardness (CaCO ₃)	mg/L	monthly
	Chronic toxicity [7]	TÜ。	quarterly
	Acute toxicity [8]	%survival	semiannually
	Perchlorate ^[9]	μg/L	semiannually
,	1,4-Dioxane [10]	μg/L	semiannually
· · ·	1,2,3-Trichloropropane [11]	μg/L	semiannually
	MTBE ^[12]	μg/L	semiannually
1	Antimony		quarterly
2	Arsenic	μg/L	
		μg/L	quarterly
3	Beryllium	μg/L	semiannually
4	Cadmium	μg/L	monthly
5a	Chromium III	μg/L	monthly
5b	Chromium VI	μg/L	monthly
	Total Chromium	μg/L	monthly
6	Copper	μg/L	monthly

: .			Minimum Frequency of
CTR#	Constituent	Units	Analysis
	Iron	μg/L	monthly
7	Lead	μg/L	monthly
8	Mercury	μg/L	monthly
9	Nickel	μg/L	quarterly
10	Selenium	μg/L	monthly
11	Silver	μg/L	quarterly
12	Thallium	μg/L	semiannually
13	Zinc	μg/L	monthly
14	Cyanide	μg/L	monthly
16	2,3,7,8-TCDD (Dioxin) [13]	μg/L	semiannually
17	Acrolein	μg/L	semiannually
18	Acrylonitrile	μg/L	semiannually
19	Benzene	μg/L	semiannually
20	Bromoform	μg/L	monthly
21	Carbon tetrachloride	μg/L	semiannually
22	Chlorobenzene	μg/L	semiannually
23	Dibromochloromethane	μg/L	monthly
24	Chloroethane	μg/L	semiannually
25	2-Chloroethylvinyl Ether	μg/L	semiannually
26	Chloroform	μg/L	monthly
27	Bromodichloromethane	μg/L	monthly
28	1,1-Dichloroethane	μg/L	semiannually
29	1,2-Dichloroethane	μg/L	semiannually
30	1,1-Dichloroethylene	μg/L	semiannually
31	1,2-Dichloropropane	μg/L	semiannually
32	1,3-Dichloropropylene	μg/L	semiannually
33	Ethylbenzene	μg/L	semiannually
34	Methyl bromide	μg/L	semiannually
35	Methyl chloride	μg/L	semiannually
36	Methylene chloride	μg/L	semiannually
37	1,1,2,2-Tetrachloroethane	μg/L	monthly
38	Tetrachloroethylene	μg/L	monthly
39	Toluene	μg/L	semiannually
40	1,2-Trans-Dichloroethylene	μg/L	semiannually
41	1,1,1-Trichloroethane	μg/L	semiannually
42	1,1,2-Trichloroethane	μg/L	semiannually
43	Trichloroethylene	μg/L	semiannually
44 .	Vinyl chloride	μg/L	semiannually
	2-Chlorophenol	μg/L	semiannually
45	2-011101001161101	η μυ/ -	Somiamually